首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biological removal of carbon, nitrogen and sulfur is drawing increasing research interest in search for an efficient and cost-effective wastewater treatment. While extensive work on separate removal of nitrogen and sulfur is well documented, investigation on simultaneous denitrifying sulfide removal has only been reported recently. Most of the work on denitrifying sulfide removal has been focusing on bioreactor performance, loading and operating conditions. Nonetheless, underlying principles elucidating the biochemical reactions and the mechanisms of the microbial degradation are yet to be established. In addition, unstable denitrifying sulfide removal which is a major operating problem that hinders practical application of the process, is yet to be resolved. This paper provides a review on the state-of-the-art development of simultaneous biological removal of sulfur, nitrogen and carbon. Research on bioreactor operation and performance, reactor configurations, mechanisms and modeling work including the use of mass balance analysis and artificial neural networks is delineated. An in-depth discussion on the microbial community and functional consortium is also provided. Challenges and future work on simultaneous biological removal of nitrogen–sulfur–carbon are also outlined.  相似文献   

2.
3.
A promising chemical absorption–biological reduction integrated process has been proposed. A major problem of the process is oxidation of the active absorbent, ferrous ethylenediaminetetraacetate (Fe(II)EDTA), to the ferric species, leading to a significant decrease in NO removal efficiency. Thus the biological reduction of Fe(III)EDTA is vitally important for the continuous NO removal. Oxygen, an oxidizing agent and biological inhibitor, is typically present in the flue gas. It can significantly retard the application of the integrated process. This study investigated the influence mechanism of oxygen on the regeneration of Fe(II)EDTA in order to provide insight on how to eliminate or decrease the oxygen influence. The experimental results revealed that the dissolved oxygen and Fe(III)EDTA simultaneously served as electron acceptor for the microorganism. The Fe(III)EDTA reduction activity were directly inhibited by the dissolved oxygen. When the bioreactor was supplied with 3% and 8% oxygen in the gas phase, the concentration of initial dissolved oxygen in the liquid phase was 0.28 and 0.68 mg l−1. Correspondingly, the instinct Fe(III)EDTA reduction activity of the microorganism determined under anoxic condition in a rotation shaker decreased from 1.09 to 0.84 and 0.49 mM h−1. The oxidation of Fe(II)EDTA with dissolved oxygen prevented more dissolved oxygen access to the microorganism and eased the inhibition of dissolved oxygen on the microorganisms.  相似文献   

4.
Wang  Ying  Ji  Hongfei  Wang  Rui  Guo  Shengli 《Plant and Soil》2019,440(1-2):443-456
Plant and Soil - Nitrogen (N) is not only a major regulator of productivity in terrestrial systems but can also be a pollutant. While the effects of fertilizer addition to soil N cycling processes...  相似文献   

5.
The asymmetric synthesis of 1-C-alkyl-l-arabinoiminofuranoses 1 was achieved by asymmetric allylic alkylation (AAA), ring closing metathesis (RCM), and Negishi cross coupling as key reactions. Some of the prepared compounds showed potent inhibitory activities towards intestinal maltase, with IC50 values comparable to those of commercial drugs such as acarbose, voglibose, and miglitol, which are used in the treatment of type 2 diabetes. Among them, the inhibitory activity (IC50 = 0.032 μM) towards intestinal sucrase of 1c was quite strong compared to the above commercial drugs.  相似文献   

6.
Wastewater treatment plants (WWTPs) are engineered structures that collect, concentrate, and treat human waste, ultimately releasing treated wastewater into local environments. While WWTPs efficiently remove most biosolids, it has been shown that many antibiotics and antibiotic-resistant bacteria can survive the treatment process. To determine how WWTPs influence the concentration and dissemination of antibiotic-resistant genes into the environment, a functional metagenomic approach was used to identify a novel antibiotic resistance gene within a WWTP, and quantitative PCR (qPCR) was used to determine gene copy numbers within the facility and the local coastal ecosystem. From the WWTP metagenomic library, the fosmid insert contained in one highly resistant clone (MIC, ≈ 416 μg ml(-1) ampicillin) was sequenced and annotated, revealing 33 putative genes, including a 927-bp gene that is 42% identical to a functionally characterized β-lactamase from Staphylococcus aureus PC1. Isolation and subcloning of this gene, referred to as bla(M-1), conferred ampicillin resistance to its Escherichia coli host. When normalized to volume, qPCR showed increased concentrations of bla(M-1) during initial treatment stages but 2-fold-decreased concentrations during the final treatment stage. The concentration ng(-1) DNA increased throughout the WWTP process from influent to effluent, suggesting that bla(M-1) makes up a significant proportion of the overall genetic material being released into the coastal ecosystem. Average discharge was estimated to be 3.9 × 10(14) copies of the bla(M-1) gene released daily into this coastal ecosystem. Furthermore, the gene was observed in all sampled coastal water and sediment samples surrounding the facility. Our results suggest that WWTPs may be a pathway for the dissemination of novel antibiotic resistance genes into the environment.  相似文献   

7.
The 2009-2010 influenza pandemic saw many people treated with antivirals and antibiotics. High proportions of both classes of drugs are excreted and enter wastewater treatment plants (WWTPs) in biologically active forms. To date, there has been no study into the potential for influenza pandemic-scale pharmaceutical use to disrupt WWTP function. Furthermore, there is currently little indication as to whether WWTP microbial consortia can degrade antiviral neuraminidase inhibitors when exposed to pandemic-scale doses. In this study, we exposed an aerobic granular sludge sequencing batch reactor, operated for enhanced biological phosphorus removal (EBPR), to a simulated influenza-pandemic dosing of antibiotics and antivirals for 8 weeks. We monitored the removal of the active form of Tamiflu(?), oseltamivir carboxylate (OC), bacterial community structure, granule structure and changes in EBPR and nitrification performance. There was little removal of OC by sludge and no evidence that the activated sludge community adapted to degrade OC. There was evidence of changes to the bacterial community structure and disruption to EBPR and nitrification during and after high-OC dosing. This work highlights the potential for the antiviral contamination of receiving waters and indicates the risk of destabilizing WWTP microbial consortia as a result of high concentrations of bioactive pharmaceuticals during an influenza pandemic.  相似文献   

8.
Abstract

AmBisome (liposomal amphotericin B) is among the earliest approved liposomal therapeutics, and has been in commercial use since the early 1990s. This review provides examples of non-clinical, regulatory, clinical label expansion, adverse event management, and supply chain control reflecting the real world challenges of a commercial liposomal therapeutic. We review examples of post-approval clinical development in severe lung infections, development of US and European guidance documents around liposomal therapeutics, the creation of a suitable placebo for blinded clinical trials, response to findings of a possible new category of adverse event (what turned out to be pseudohyperphosphatemia), challenges in handling the finished product in a setting with high risk of exposure of the product to temperatures outside of the established label storage conditions, and elements of continuingly increased aseptic processing requirements for manufacturing.  相似文献   

9.
10.
Organic forms of nitrogen are widespread in the atmosphere and their deposition may constitute a substantive input of atmospheric N to terrestrial and aquatic ecosystems. Recent studies have expanded the pool of available measurements and our awareness of their potential significance. Here, we use these measurements to provide a coherent picture of the processes that produce both oxidized and reduced forms of organic nitrogen in the atmosphere, examine how those processes are linked to human activity and how they may contribute to the N load from the atmosphere to ecosystems. We summarize and synthesize data from 41 measurements of the concentrations and fluxes of atmospheric organic nitrogen (AON). In addition, we examine the contribution of reduced organic nitrogen compounds such as amino acids, bacterial/particulate N, and oxidized compounds such as organic nitrates to deposition fluxes of AON. The percentage contribution of organic N to total N loading varies from site to site and with measurement methodology but is consistently around a third of the total N load with a median value of 30% (Standard Deviation of 16%). There are no indications that AON is a proportionally greater contributor to N deposition in unpolluted environments and there are not strong correlations between fluxes of nitrate and AON or ammonium and AON. Possible sources for AON include byproducts of reactions between NOx and hydrocarbons, marine and terrestrial sources of reduced (amino acid) N and the long-range transport of organic matter (dust, pollen etc.) and bacteria. Both dust and organic nitrates such as PAN appear to play an important role in the overall flux of AON to the surface of the earth. For estimates of organic nitrate deposition, we also use an atmospheric chemical transport model to evaluate the spatial distribution of fluxes and the globally integrated deposition values. Our preliminary estimate of the magnitude of global AON fluxes places the flux between 10 and 50 Tg of N per year with substantial unresolved uncertainties but clear indications that AON deposition is an important aspect of local and global atmospheric N budgets and deserves further consideration.  相似文献   

11.
Tuberculosis remains a global public health problem in recent years. To develop novel type of potential antitubercular agents, twelve novel dihydroartemisinin–fluoroquinolone (DHA–FQ) conjugates (three types of molecules) were gradually designed and conveniently synthesized. All the newly synthesized conjugates were well characterized and evaluated against different Mycobacterium tuberculosis strains in vitro. The screening results showed that five DHA–FQ conjugates were active toward M. tuberculosis H37Rv, and compound 3a exhibited the strongest inhibitory activity (MIC = 0.0625 μg/mL), which was comparable to the positive control Moxifloxacin and even stronger than Ofloxacin. Conjugates 2a and 3a also displayed comparable activities against various clinically isolated sensitive and resistant M. tuberculosis strains (MIC = 0.125–16 μg/mL) to Moxifloxacin. All target compounds possessed selective anti-M. tuberculosis ability. Preliminary structure–activity relationship demonstrated that short linker between DHA and FQ was favorable for strong antitubercular activity. This study provides a new clue for the development of novel antitubercular lead molecules.  相似文献   

12.
Soil biological activities are vital for the restoration of soil contaminated with hydrocarbons. Their role includes the biotransformation of petroleum compounds into harmless compounds. In this paper, the use of biological activities as potential monitoring tools or bioindicators during bioremediation of hydrocarbon-contaminated soil are reviewed. The use of biological activities as bioindicators of hydrocarbon removal in soil has been reported with variable success. This variability can be attributed partially to the spatial variability of soil properties, which undoubtedly plays a role in the exposure of organisms to contaminants. Widely used bioindicators have been enzyme activities, seed germination, earthworm survival and microorganisms or microbial bioluminescence. A mixture of some successful utilization of biological activities and several failures, and inconsistencies reported, show that at this stage there is no general guarantee of successful utilization of biological activities as monitoring tools. Wherever possible, the use of biological activities as bioindicators of hydrocarbon removal must be used to complement existing traditional monitoring tools.  相似文献   

13.
14.

Background

Olodaterol is a novel, inhaled long-acting β2-agonist (LABA) with >24-hour duration of action investigated in asthma and chronic obstructive pulmonary disease.

Methods

Two multicentre studies examined the efficacy and safety of 4 weeks’ once-daily (QD) olodaterol (2, 5, 10 and 20 μg, with background inhaled corticosteroids) in patients with asthma. One randomised, double-blind, parallel-group study (1222.6; 296 patients) administered treatment in the morning. Pulmonary function tests (PFTs) were performed pre-dose (trough) and ≤3 hours post-dose (weeks 1 and 2), and ≤6 hours post-dose after 4 weeks; primary end point was trough forced expiratory volume in 1 second (FEV1) response (change from baseline mean FEV1) after 4 weeks. A second randomised, double-blind, placebo- and active-controlled (formoterol 12 μg twice-daily) incomplete-block crossover study (1222.27; 198 patients) administered QD treatments in the evening. PFTs were performed over a 24-hour dosing interval after 4 weeks; primary end point was FEV1 area under the curve from 0–24 hours (AUC0–24) response (change from study baseline [mean FEV1] after 4 weeks).

Results

Study 1222.6 showed a statistically significant increase in trough FEV1 response with olodaterol 20 μg (0.147 L; 95 % confidence interval [CI]: 0.059, 0.234; p = 0.001) versus placebo, with more limited efficacy and no evidence of dose response compared to placebo across the other olodaterol doses (2, 5 and 10 μg). Study 1222.27 demonstrated increases in FEV1 AUC0–24 responses at 4 weeks with all active treatments (p < 0.0001); adjusted mean (95 % CI) differences from placebo were 0.140 (0.097, 0.182), 0.182 (0.140, 0.224), 0.205 (0.163, 0.248) and 0.229 (0.186, 0.272) L for olodaterol 2, 5, 10 and 20 μg, respectively, and 0.169 (0.126, 0.211) for formoterol, providing evidence of increased efficacy with higher olodaterol dose. Olodaterol was generally well tolerated, with a few events associated with known sympathomimetic effects, mainly with 20 μg.

Conclusions

The LABA olodaterol has >24-hour duration of action. In patients with asthma, evidence of bronchodilator efficacy was demonstrated with statistically and clinically significant improvements in the primary end point of trough FEV1 response measured in clinics over placebo for the highest administered dose of 20 μg in Study 1222.6, and statistically and clinically significant improvements versus placebo in FEV1 AUC0–24 responses at 4 weeks for all doses tested in Study 1222.27, which also exhibited a dose response. Bronchodilator efficacy was seen over placebo for all olodaterol doses for morning and evening peak expiratory flow in both studies. All doses were well tolerated.

Trial registrations

NCT00467740 (1222.6) and NCT01013753 (1222.27).

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0249-8) contains supplementary material, which is available to authorized users.  相似文献   

15.
Abstract

This study is based on our attempts to further explore the structure–activity relationship (SAR) of VX-148 (3) in an attempt to identify inosine 5′-mono-phosphate dehydrogenase (IMPDH) inhibitors superior to mycophenolic acid. A five-point pharmacophore developed using structurally diverse, known IMPDH inhibitors guided further design of novel analogs of 3. Several conventional as well as novel medicinal chemistry strategies were tried. The combined structure- and ligand-based approaches culminated in a few analogs with either retained or slightly higher potency. The compounds which retained the potency were also checked for their ability to inhibit human peripheral blood mononuclear cells proliferation. This study illuminates the stringent structural requirements and strict SAR for IMPDH II inhibition.  相似文献   

16.
Abatacept (CTLA4-Ig) is a novel fusion protein designed to modulate the T cell co-stimulatory signal mediated through the CD28-CD80/86 pathway. Clinical trials have provided preliminary evidence of the efficacy of this compound in the treatment of rheumatoid arthritis. This review describes the molecular and biologic bases for the use of abatacept in rheumatoid arthritis and summarizes the current clinical data on its safety and effectiveness in this disease.  相似文献   

17.
BackgroundNocturnal enuresis or ‘bedwetting’, is a form of night-time urinary incontinence occurring in younger children. A diagnosis can be socially disruptive and psychologically stressful for a child. The most common strategies used by parents are waking the child during the night to use the bathroom and limiting the child's water intake before going to bed.Hypothesis/PurposeTo determine if a herbal capsule formulation taken once daily can reduce incidence and frequency of nocturnal enuresis in children.Study DesignThis randomised double-blind placebo-controlled trial evaluated the efficacy of an herbal medicine product to reduce the symptoms of nocturnal enuresis. Participants, aged between 6 and 14 years of age, were recruited from the community in Australia. They were randomised via computerised random-number generation at study enrolment to receive one or two oral capsules in the morning of either Urox® (Bedtime Buddy®) or placebo. The Paediatric Quality of life (Pin-Q) was used as a quality-of-life measure and waking wet, fluid intake and urinary urgency per week were monitored.ResultsForty-one children completed the trial with an attrition rate of 16%. There were more males (64.6%) compared to females (35.4%) and the mean age was 8.6 years. Forty-one point seven percentages (41.7%) of participants had improvements in bed wetting by two months which was a highly clinically relevant effect (Cohen's D = 0.98). The primary outcome found that there was a statistically significant reduction in NE (p = 0.034; CI 0.086–2.095) and between groups using longitudinal analysis (p = 0.04, Coefficient -1.12, CI 95% -2.20 - -0.04). In the secondary outcomes, urinary urgency reduced statistically significantly for the intervention (p = 0.002; a reduction of 18.3% difference for Bedtime Buddy compared to an increase of 3.7% for the placebo).ConclusionUrox® (Bedtime Buddy®) may assist children in reducing nocturnal enuresis compared to placebo. In addition, it may assist in reducing daily incontinence and urinary urgency.  相似文献   

18.
The biological reduction of Fe(III) ethylenediaminetetraacetic acid (EDTA) is a key step for NO removal in a chemical absorption–biological reduction integrated process. Since typical flue gas contain oxygen, NO2 and NO3 would be present in the absorption solution after NO absorption. In this paper, the interaction of NO2 , NO3 , and Fe(III)EDTA reduction was investigated. The experimental results indicate that the Fe(III)EDTA reduction rate decrease with the increase of NO2 or NO3 addition. In the presence of 10 mM NO2 or NO3 , the average reduction rate of Fe(III)EDTA during the first 6-h reaction was 0.076 and 0.17 mM h−1, respectively, compared with 1.07 mM h−1 in the absence of NO2 and NO3 . Fe(III)EDTA and either NO2 or NO3 reduction occurred simultaneously. Interestingly, the reduction rate of NO2 or NO3 was enhanced in presence of Fe(III)EDTA. The inhibition patterns observed during the effect of NO2 and NO3 on the Fe(III)EDTA reduction experiments suggest that Escherichia coli can utilize NO2 , NO3 , and Fe(III)EDTA as terminal electron acceptors.  相似文献   

19.
In the first part of this paper, we introduced a modified rotating biological contactor (RBC) for the biological treatment of waste gas, and demonstrated its feasibility by applying the process to the biodegradation of toluene in a 91-liter reactor containing 20 biofilm support discs with a diameter of 40 cm [1]. We showed that the proposed system allows the unlimited growth of the biofilm to be suppressed, hence eliminating the risk of clogging associated with other biological waste gas treatment systems. Furthermore, we observed stationary long-term performance for more than one year under typical standard operating conditions. In this part of our work, we investigate experimentally the influence of the main process parameters, i.e., gas flow rate, inlet gas concentration, and rotational speed of the biofilm supports on process performance for the same system. Experimental results indicate that the modified RBC system is mass transfer limited for toluene loadings below 150 g/m(3)h, whereas at higher inlet concentrations of the pollutant, it becomes limited by the biodegradation reaction inside the biofilm. Surprisingly, the disc rotational speed is found to have no major effect on process performance for the system under investigation. A time-independent mathematical model of the process is also presented, and predictions are compared with experimental degradation data. In the range of the investigation process parameters, good agreement between the experimental data and simulation results is obtained.  相似文献   

20.
Water and energy are closely connected and both are very important for human development. Wastewater treatment plants (WWTPs) are central to water–energy interactions as they consume energy to remove pollutants and thus reduce the human gray water footprint on the natural water environment. In this work, we quantified energy consumption in 9 different WWTPs in south China, with different treatment processes, objects, and capacities. The energy intensity in most of these WWTPs is in the range of 0.4–0.5 kWh/m3 in 2014. Footprint methodologies were used in this paper to provide insight into the environmental changes that result from WWTPs. A new indicator “gray water footprint reduction” is proposed based on the notion of gray water footprint to better assess the role of WWTPs in reducing human impacts on water resources. We find that higher capacity and appropriate technology of the WWTPs will result in higher gray water footprint reduction. On average, 6.78 m3 gray water footprint is reduced when 1 m3 domestic sewage is treated in WWTPs in China. 13.38 L freshwater are required to produce the 0.4 kWh electrical input needed for treating 1 m3 domestic wastewater, and 0.23 kg CO2 is emitted during this process. The wastewater characteristics, treatment technologies as well as management systems have a major impact on the efficiency of energy utilization in reducing gray water footprint via these WWTPs. The additional climate impact associated with wastewater treatment should be considered in China due to the enormous annual wastewater discharge. Policy suggestions are provided based on results in this work and the features of China's energy and water distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号