首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nutritional Features of the Intestinal Anaerobe Ruminococcus bromii   总被引:6,自引:6,他引:0       下载免费PDF全文
Of six strains of Ruminococcus bromii studied, five grew in a minimal chemically defined medium containing minerals, NH(4) (+) as nitrogen source, sulfide or sulfate as sulfur source, fructose as energy and carbon source, isobutyrate or 2-methylbutyrate and carbonic acid-bicarbonate as additional carbon sources, and the vitamins biotin, riboflavin, pyridoxine, vitamin B(12) (replaced by L-methionine), pantethine, and tetrahydrofolate. The strains also could utilize cysteine or thiosulfate but not methionine; and strain Z3 failed to use dithiothreitol, thioglycolate, sulfite, or beta-mercaptoethanol as sole sources of sulfur. Mixtures of amino acids, peptides (Casitone), urea, nitrate, asparagine, or glutamine failed to replace NH(4) (+) as N source. Three strains isolated from Americans were identical in nutritional features, whereas one from a Japanese and one from a South African native differed slightly in having requirements for fewer vitamins. One strain from the cecum of a sow grew well in a rumen fluid-supplemented medium but not in the various chemically defined media plus Casitone. The nutritional features suggest that the environment which selects R. bromii contains relatively little amino acid nitrogen and a relatively large amount of NH(4) (+)-N and indicate that these bacteria must depend upon other bacteria such as those that produce NH(4) (+) from urea or protein and those that produce branched-chain volatile acids to grow.  相似文献   

2.
Syntrophomonas wolfei subsp. wolfei grew poorly in a defined medium with crotonate as the energy source in the absence of rumen fluid. Thiamine, lipoic acid, biotin, cyanocobalamin, and para-aminobenzoic acid were required for growth comparable to that obtained with the rumen fluid-based medium. Iron and cobalt were also required for the growth of S. wolfei in the chemically defined medium.  相似文献   

3.
Six non-amino acid nitrogen compounds were examined as nitrogen source for growth of Streptomyces hygroscopicus and biosynthesis of rapamycin. Of the nitrogen sources studied, ammonium sulfate was the best with respect to formation of rapamycin, and supported cell growth comparable to the organic nitrogen sources used in the control chemically defined medium, ie, aspartate, arginine plus histidine. In the new chemically defined medium, which is buffered with 200 mM 2-(N-morpholino)ethanesulfonic acid to prevent decline of pH during fermentation, an ammonium sulfate concentration of 40 mM was optimal for biosynthesis of rapamycin. Rapamycin production increased by more than 30% on both volumetric and specific bases as compared to the previous medium containing the three amino acids as nitrogen source. Received 08 November 1996/ Accepted in revised form 07 April 1997  相似文献   

4.
S ummary : Glycerol stimulated sporulation of Saccharomyces cerevisiae Hanson, especially when the cells were precultured in a complex growth medium instead of a chemically defined medium. Optimum spore yields occurred with 1–4% of glycerol but some were produced in 16% glycerol. Sporulation in glycerol was much less sensitive to ammonium sulphate inhibition than it was in acetate. Growth occurred with glycerol as sole carbon source and glutamic acid as sole nitrogen source, but not with ammonium sulphate as the sole nitrogen source.  相似文献   

5.
Carbon Dioxide Requirement of Various Species of Rumen Bacteria   总被引:4,自引:0,他引:4       下载免费PDF全文
The carbon dioxide requirement of 32 strains of rumen bacteria, representing 11 different species, was studied in detail. Increasing concentrations of CO(2) were added as NaHCO(3) to a specially prepared CO(2)-free medium which was tubed and inoculated under nitrogen. Prior depletion of CO(2) in the inoculum was found to affect the level of requirement; however, the complexity and buffering capacity of the medium did not appear to be involved. An absolute requirement for CO(2) was observed for eight strains of Bacteroides ruminicola, three strains of Bacteroides succinogenes, four strains of Ruminococcus flavefaciens, two strains of Lachnospira multiparus, one strain of Succinimonas amylolytica, and two strains of Butyrivibrio fibrisolvens. Inconsistent growth responses were obtained in CO(2)-free media with one strain each of B. fibrisolvens, Ruminococcus albus, and Selenomonas ruminantium. Growth of six additional strains of B. fibrisolvens, and single strains of Eubacterium ruminantium and Succinivibrio dextrinosolvens was markedly increased or stimulated by increasing concentrations of CO(2). Peptostreptococcus elsdenii B159 was the only organism tested which appeared to have no requirement, either absolute or partial, for CO(2). Higher concentrations of CO(2) were required for the initiation of growth, as well as for optimal growth, by those species which produce succinic acid as one of their primary end products.  相似文献   

6.
Very little is known about the growth physiology and metabolic niche of the human oral isolate Selenomonas sputigena. The objective of this study was to devise a minimal medium for comparing growth rates and fermentation of rumen Selenomonas ruminantium strains with S. sputigena. When anaerobically grown on a minimal glucose medium containing yeast extract as the only chemically undefined component, S. sputigena produced acetate, propionate, and succinate while S. ruminantium strains produced primarily lactate. When strains were compared (P < 0.05) for each carbon source that yielded growth, rumen strain HD4 grew faster than all other strains on glucose, cellobiose and glycerol while strain GA192 grew faster on trehalose. Rumen strains GA192, PC18, and HD4 grew faster on mannitol than rumen strains D and GA31. S. sputigena grew faster on lactate (0.38 ± 0.04) than any of the S. ruminantium strains. The minimal medium developed in this study should be useful for jurmer physiological studies on fermentation and metabolism in S. sputigena.  相似文献   

7.
The carbon and nitrogen source requirements of Aspergillus fumigatus NRRL 2436 for growth and production of the angiogenesis inhibitor fumagillin were studied in chemically defined media. Both carbon and nitrogen sources strongly influenced fumagillin formation. Two out of 29 carbon sources tested interfered with fumagillin biosynthesis. The best combination of two carbon sources was 30 g L(-1) xylan and 50 g L(-1) mannose. Of fifteen nitrogen sources tested, three ammonium salts (chloride, sulfate, and dibasic phosphate) failed to support fumagillin formation, presumably due to the low pH which developed. The dosage-response study of the best nitrogen source, L-glutamic acid, revealed that 9 g L(-1) was optimal. Volumetric production of fumagillin was increased by 15-fold over that in the starting (Peterson-Goldstein) medium as a result of these findings.  相似文献   

8.
Ruminal ciliates have been grown in continuous culture in chemically defined media and in the absence of viable bacteria. Oligotrichic ruminal ciliates seem to require insoluble carbohydrates for growth; the holotrichic ciliates require soluble carbohydrates, but at low concentrations. Both groups of ciliates utilize amino acids as their principal nitrogen source when these are supplied in micromolar concentrations; at millimolar concentrations, amino acids are toxic, possibly from excessive ammonia formation arising from ciliate deaminase activity. Holotrichic ruminal ciliates are destroyed by overdeposition of amylopectin when glucose is present above 0.1% concentration in the medium. Ecological requirements of ruminal ciliates are also described.  相似文献   

9.
Several lactic acid bacteria use homolactic acid fermentation for generation of ATP. Here we studied the role of the lactate dehydrogenase enzyme on the general physiology of the three homolactic acid bacteria Lactococcus lactis, Enterococcus faecalis, and Streptococcus pyogenes. Of note, deletion of the ldh genes hardly affected the growth rate in chemically defined medium under microaerophilic conditions. However, the growth rate was affected in rich medium. Furthermore, deletion of ldh affected the ability for utilization of various substrates as a carbon source. A switch to mixed acid fermentation was observed during glucose-limited continuous growth and was dependent on the growth rate for S. pyogenes and on the pH for E. faecalis. In S. pyogenes and L. lactis, a change in pH resulted in a clear change in Y(ATP) (cell mass produced per mole of ATP). The pH that showed the highest Y(ATP) corresponded to the pH of the natural habitat of the organisms.  相似文献   

10.
Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains.  相似文献   

11.
The carbon and nitrogen source requirements of Aspergillus fumigatus NRRL 2436 for growth and production of the angiogenesis inhibitor fumagillin were studied in chemically defined media. Both carbon and nitrogen sources strongly influenced fumagillin formation. Two out of 29 carbon sources tested interfered with fumagillin biosynthesis. The best combination of two carbon sources was 30 g L−1 xylan and 50 g L−1 mannose. Of fifteen nitrogen sources tested, three ammonium salts (chloride, sulfate, and dibasic phosphate) failed to support fumagillin formation, presumably due to the low pH which developed. The dosage-response study of the best nitrogen source, L-glutamic acid, revealed that 9 g L−1 was optimal. Volumetric production of fumagillin was increased by 15-fold over that in the starting (Peterson-Goldstein) medium as a result of these findings. Received: 8 April 2002 / Accepted: 24 June 2002  相似文献   

12.
Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains.  相似文献   

13.
A chemically defined minimal medium for Listeria monocytogenes has been developed by modification of Welshimer's medium. The growth factors required by L. monocytogenes Scott A are leucine, isoleucine, arginine, methionine, valine, cysteine (each at 100 mg/liter), riboflavin and biotin (each at 0.5 micrograms/ml), thiamine (1.0 micrograms/ml), and thioctic acid (0.005 micrograms/ml). Growth was stimulated by 20 micrograms of Fe3+ per ml as ferric citrate. Glucose (1%) and glutamine (600 mg/liter) are required as primary sources of carbon and nitrogen. Glucose could not be replaced by various organic acids or amino acids. Of several sugars tested, fructose, mannose, cellobiose, trehalose, maltose (weak), glycerol (weak), and the amino sugars glucosamine, N-acetylglucosamine, and N-acetylmuramic acid supported growth in the absence of glucose. Evidence was found that chitin and cell walls of starter bacteria (Lactococcus lactis) supported survival of L. monocytogenes, which suggests that the pathogen may obtain carbon and energy sources during colonization of some foods, such as cheeses, by assimilating bacteria or molds that are present.  相似文献   

14.
A minimally defined medium was developed for the cultivation of the acetogen Clostridium thermoaceticum. The medium contained glucose as the carbon and energy source, ammonium sulfate as the nitrogen source, nicotinic acid as the sole essential vitamin, reductant, a phosphate-bicarbonate buffer, mineral salts and chelator, and a CO2 gas phase. Adaptation of C. thermoaceticum from undefined medium containing yeast extract and tryptone to the minimally defined medium required sequential passage on defined medium supplemented with amino acids and vitamins. Growth and cell yields were reduced on the minimal medium, but the activities of carbon monoxide dehydrogenase, hydrogenase, and formate dehydrogenase were comparable between undefined and minimal media.  相似文献   

15.
A minimal chemically defined medium has been developed for growth (approximately 25 Klett units) and production of detectable enterotoxin B (approximately 5-6 mug/ml) by Staphylococcus aureus S-6. This medium contains monosodium glutamate as a source of carbon, nitrogen, and energy, three additional amino acids (arginine, cystine, and phenylalanine), six inorganic salts, and four vitamins. Increasing the concentrations of several amino acids in a series of defined media gave no increase in enterotoxin production. Apparently the limiting factor for growth and enterotoxin production in these media is the biosynthesis of one or more missing amino acids, rather than the concentration of the amino acids present in the media. An additional requirement for proline and valine was observed when glucose was added as the primary source of energy. When compared to complex media, our results indicated that the inhibitory effect of glucose on enterotoxin synthesis in defined media was less evident or totally absent.  相似文献   

16.
Certain anaerobic ruminal bacteria synthesize the leucine carbon skeleton by use of a pathway different from that described in other microorganisms. These organisms carboxylate the intact carbon skeleton of isovalerate, synthesizing leucine-2-C(14) from isovalerate-1-C(14). Strains of Bacteroides ruminicola and Peptostreptococcus elsdenii were like Ruminococcus flavefaciens in that they incorporated appreciable amounts of C(14) from isovalerate-1-C(14) into cellular protein and in that the only labeled amino acid found was leucine. The specific activity of beta-isopropylmalate dehydrogenase in extracts from R. flavefaciens and from the mixed bacterial population from the rumen was very low as compared with the specific activity of this enzyme in extracts from Escherichia coli. This suggests that the pathway of leucine biosynthesis that operates in many aerobic and facultative microorganisms is not the major pathway in rumen bacteria. This was supported by the finding that after fermentation of whole rumen contents with acetate-2-C(14), leucine from the bacterial cells had a specific activity lower than one would expect if acetate was incorporated directly into carbons 1 and 2 of leucine.  相似文献   

17.
Rhizobium leguminosarum GF160 required iron for growth under aerobic conditions in a chemically defined medium. Maximal growth of bacteria previously depleted in iron was obtained with approximately 50 microM unchelated ferric iron and with glucose as the only carbon source. Growth under iron deficiency did not result in the production of detectable levels of siderophores of either the catechol or hydroxamate types. Growing cells released a Fe3+-reducing agent that was identified as anthranilic acid by paper and thin-layer chromatography, ultraviolet and nuclear magnetic resonance spectroscopy, and mass spectrometry. The amount of anthranilic acid secreted per unit of cell growth was inversely related to the iron concentration in the culture medium and reached concentrations up to 1 mM. Ferric but not ferrous ions were solubilized in the growth medium by anthranilic acid.  相似文献   

18.
Abstract Samples of rumen ingesta from two rumen-fistulated dairy cows fed grass silage-based diets were examined for numbers and types of bacteria that developed colonies on rumen fluid-agar media designated to support the growth of (a) a wide range of species, (b) cellulolytic bacteria, (c) lactate-fermenting bacteria, (d) non-fermentative bacteria. The most numerous species was Bacteroides ruminicola followed by Butyrivibrio fibrisolvens . The most abundant cellulolytic species were Eubacterium cellulosolvens and Ruminococcus flavefaciens. Megasphaera elsdenii and Selenomonas ruminantium were important lactate fermenters but an unidentified bacterium that grew poorly on maintenance medium was by far the most numerous among bacteria isolated from lactate-containing medium. One strain remained sufficiently viable to show that it fermented lactate to propionate and acetate.  相似文献   

19.
To increase the productivity of l-phenylalanine from acetamidocinnamic acid, we screened bacteria containing high acetamidocinnamate amidohydrolase activity, and strain S-5 containing high activity was isolated from soil. The bacteria were identified as Corynebacterium sp. S-5.When strain S-5 was cultured in a medium containing acetamidocinnamic acid as the sole carbon source or enzyme inducer, the formation of acetamidocinnamate amidohydrolase was observed. This was controlled by catabolite repression. When the strain was cultured in a medium containing glucose and acetamidocinnamic acid as the sole nitrogen source, it showed low acetamidocinnamate amidohydrolase activity and an increased doubling time.To obtain acetamidocinnamate amidohydrolase-hyperproducing strain, we enriched cells growing faster than strain S-5 in a medium containing glucose and acetamidocinnamic acid by continuous culture of mutagenized cells. Mutant C-23 had 12-fold the enzyme production and 3-fold the growth rate of the wild-type strain in a medium containing glucose. Acetamidocinnamate amidohydrolase formation in the mutant did not require acetamidocinnamic acid as enzyme inducer and was resistant to catabolite repression.  相似文献   

20.
Growth and production of zeaxanthin by Flavobacterium sp were studied using different carbon and nitrogen sources in a chemically defined medium. The best growth was supported by sucrose, but glucose yielded similar carotenoid concentrations. Both asparagine and glutamine stimulated growth and pigment formation. Carotenoid production and glucose consumption increased as a function of asparagine concentration. In the presence of asparagine, high glucose concentrations decreased pigment production without affecting biomass formation. In the absence of glucose, asparagine could not support growth and zeaxanthin production. When compared to the effect of 55 mM glucose, 10 mM oxaloacetate increased growth and carotenoid production. Pyruvate and other intermediates of the citric acid cycle showed a similar stimulatory effect. The intermediates of glycolysis: glucose 6-phosphate and fructose 1,6-diphosphate did not support growth. These results suggest that Flavobacterium sp utilizes asparagine primarily as a nitrogen source for growth and production of zeaxanthin. Received 29 September 1998/ Accepted in revised form 23 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号