首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstitution experiments with a chemically synthesized core light-harvesting (LH1) beta-polypeptide analogue having 3-methylhistidine instead of histidine in the position that normally donates the coordinating ligand to bacteriochlorophyll (Bchl) have provided the experimental data needed to assign to B820 one of the two possible alphabeta.2Bchl pairs that are observed in the crystal structure of LH2 from Phaeospirillum (formerly Rhodospirillum) molischianum, the one with rings III and V of Bchl overlapping. Consistent with the assigned structure, experimental evidence is provided to show that significant stabilizing interactions for both the subunit complex (B820) and LH1 occur between the N-terminal regions of the alpha- and beta-polypeptides. On the basis of the results with the chemically synthesized polypeptides used in this study, along with earlier results with protease-modified polypeptides, mutants, and chemically synthesized polypeptides, the importance of a stretch of 9-13 amino acids at the N-terminal end of the alpha- and beta-polypeptides is underscored. A progressive loss of interaction with the LH1 beta-polypeptide was found as the first three N-terminal amino acids of the LH1 alpha-polypeptide were removed. The absence of the N-terminal formylmethionine (fMet), or conversion of the sulfur in this fMet to the sulfoxide, resulted in a decrease in LH1 formation. In addition to the removal of fMet, removal of the next two amino acids also resulted in a decrease in K(assoc) for B820 formation and nearly eliminated the ability to form LH1. It is suggested that the first three amino acids (fMetTrpArg) of the LH1 alpha-polypeptide of Rhodospirillum rubrum form a cluster that is most likely involved in close interaction with the side chain of His -18 (see Figure 1 for numbering of amino acids) of the beta-polypeptide. The results provide evidence that the folding motif of the alpha- and beta-polypeptides in the N-terminal region observed in crystal structures of LH2 is also present in LH1 and contributes significantly to stabilizing the complex.  相似文献   

2.
Fiedor L 《Biochemistry》2006,45(6):1910-1918
The ability of chlorophylls to coordinate ligands is of fundamental structural importance for photosynthetic pigment-protein complexes, where in virtually all cases the pigment is thought to be in a pentacoordinated state. In this study, the correlation of the Q(X) transition energy with the coordination state of the central metal in bacteriochlorophyll is applied in investigating the pigment coordination state in bacterial photosynthetic antenna LH1. To facilitate a detailed spectral analysis in the Q(X) region, carotenoid-depleted forms of LH1 are prepared and model LH1 are constructed with non-native carotenoids having blue-shifted absorption. The deconvolution of the Q(X) envelope in LH1 reveals that the band is the sum of two transitions, which peak near 590 and 607 nm, showing that a significant fraction (up to 25%) of hexacoordinated bacteriochlorophyll is present in the complex. The hexacoordination can be seen also in LH1 antennae from other species of purple photosynthetic bacteria. It seems correlated with the LH1 aggregation state and probably is a consequence of the structural flexibility of the assembled complex. The sixth ligand probably originates from the apoprotein and seems not to affect the chromophore core size. These findings show that in light-harvesting complexes a hexacoordinated state of bacteriochlorophyll is not uncommon. Its presence may be relevant to a correct assembly of the antenna and have functional consequences, as it results in a splitting of the pigment S2 excited state (Q(X)), i.e., the carotenoid excitation acceptor state, what might affect intracomplex carotenoid-to-bacteriochlorophyll energy transfer.  相似文献   

3.
Photosynthetic light harvesting is a unique life process that occurs with amazing efficiency. Since the discovery of the structure of the bacterial peripheral light-harvesting complex (LH2), this process has been studied using a variety of advanced laser spectroscopic methods. We are now in a position to discuss the physical origins of excitation energy transfer and trapping in the LH2 and LH1 antennae of photosynthetic purple bacteria. We demonstrate that the time evolution of the state created by the light is determined by the combined action of excitonic pigment-pitment interactions, energetic disorder, and coupling to nuclear motion in a pigment-protein complex. A quantitative fit of experimental data using Redfield theory allowed us to determine the pathways and time scales of exciton and vibrational relaxation and analyze separately different contributions to the measured transient absorption dynamics. Furthermore, these dynamics were observed to be strongly dependent on the excitation wavelength. A numerical fit of this dependence turns out to be extremely critical to a variation of the structure and disorder parameters and, therefore, can be used as a test for different antenna models (disordered ring, elliptical deformations, correlated disorder, etc.). The calculated equilibration dynamics in the exciton basis allow a visualization of the exciton motion using a density matrix picture in real space.  相似文献   

4.
Bacterial 5-oxoprolinase is composed of two protein components: Component A, which catalyzes 5-oxoproline-dependent ATP-hydrolysis and Component B, which couples the hydrolysis of ATP with the decyclization of 5-oxoproline to form glutamate (Seddon, A. P., Li, L., and Meister, A. (1984) J. Biol. Chem. 259, 8091-8094). Studies on this unusual enzyme system have led to evidence that an intermediate is formed by Component A. Application of the isotope-trapping method demonstrated an activated 5-oxoproline intermediate, whose formation requires ATP, Mg2+, and Component A. The amount of ATP-dependent trapping was close to the number of enzyme active sites. The intermediate formed by Component A was shown to be reducible by potassium borohydride to proline in low yield; when Component B was added, the formation of proline was abolished. Treatment of reaction mixtures containing Component A, 5-oxoproline, and [gamma-32P] ATP with diazomethane led to appearance of a 32P-labeled compound (found on thin layer chromatography), whose formation was significantly reduced when Component B was present. The new compound, which is labile, breaks down to form dimethyl[32P]phosphate. The total amount of dimethyl[32P]phosphate formed after breakdown is close to the number of active sites of Component A. The data are consistent with the conclusion that a phosphorylated form of 5-oxoproline is formed by Component A and suggest that Component B is required for conversion of this intermediate to glutamate.  相似文献   

5.
6.
7.
Souri M  Kaetsu H  Ichinose A 《Biochemistry》2008,47(33):8656-8664
Factor XIII (FXIII) is a heterotetramer composed of two catalytic A subunits (FXIII-A) and two B subunits (FXIII-B). FXIII-B has 10 Sushi domains. To explore the structure-function relationship of FXIII-B, we looked for domains in FXIII-B responsible for its homodimer and heterotetramer assembly with FXIII-A. Full-length recombinant human FXIII-B (rFXIII-B) and truncated rFXIII-Bs with various numbers of Sushi domains (rFXIII-B x- y ) were expressed in a baculovirus expression system. rFXIII-B was indistinguishable from purified human plasma FXIII-B, in terms of the molecular weight (after being deglycosylated by glycosidases) and the ability to form complexes between the two subunits. rFXIII-B was in dimer form and produced a heterotetramer complex with FXIII-A. Gel-filtration and FXIII-A binding analysis of the various truncated forms of rFXIII-B x- y revealed that the first Sushi domain was responsible for the binding of FXIII-B to FXIII-A and that the fourth and ninth Sushi domains were involved in the FXIII-B homodimer assembly. rFXIII-B and rFXIII-B 1-9, which formed a heterotetramer complex with FXIII-A, protected FXIII-A from proteolytic digestion. These findings suggest that only full-length or nearly full-length FXIII-B is large enough to cover the exposed surface of FXIII-A. In conclusion, at least 3 out of the 10 Sushi domains of FXIII-B have the distinct function of forming a homodimer and a heterotetramer, which should be ascribed to the differences in their amino acid sequences. The present studies, however, do not exclude the possibility that additional Sushi domains may also support either or both functions.  相似文献   

8.
The denaturation of dimeric rabbit muscle phosphoglucose isomerase in guanidine hydrochloride occurs in two discrete steps consisting of partial unfolding followed by subunit dissociation. In 3.5 to 4.5 m guanidine hydrochloride the enzyme forms a stable denaturation intermediate. Formation of this intermediate abolishes catalytic activity, shifts the protein fluorescence emission maximum from 332 to 345 nm, exposes all of the unavailable sulfhydryl groups, and decreases the s20,w from 6.8 to 4.6 S. The intermediate dissociates into fully unfolded polypeptide chains with further increases in the concentration of the denaturant. The fluorescence maximum shifts to 352 nm and the s20,w of the denatured monomer is 1.6 S. From the equilibrium constant for subunit association, 3 × 104M?1, in 4.7 m guanidine hydrochloride, the apparent free energy of association is estimated to be ?6 kcal mol?1. Reconstitution of the enzyme protein takes place by the reversal of the steps observed upon denaturation. The denatured monomers refold and associate to reform the dimeric intermediate which then anneals to yield the intact enzyme molecule.  相似文献   

9.
10.
11.
The B820 subunit is an integral pigment-membrane protein complex and can be obtained by both dissociation of the core light-harvesting complex (LH1) in photosynthetic bacteria and reconstitution from its component parts in the presence of n-octyl beta-D-glucopyranoside (OG). Intrinsic size of the B820 subunit from Rhodospirillum rubrum LH1 complex was measured by small-angle neutron scattering in perdeuterated OG solution and evaluated by Guinier analysis. Both the B820 subunits prepared by dissociation of LH1 and reconstitution from apopolypeptides and pigments were shown to have a molecular weight of 11,400 +/- 500 and radius of gyration of 11.0 +/- 1.0 A, corresponding to a heterodimer consisting of one pair of alphabeta-polypeptides and two bacteriochlorophyll a molecules. Molecular weights of micelles formed by OG alone in solutions were determined in a range from 30,000 to 50,000 over concentrations of 1-5% (w/v), and thus are much larger than that of the B820 subunit. Similar measurement on the pigment-depleted apopolypeptides revealed highly heterogeneous behavior in the OG solutions, indicating that aggregates with various sizes were formed. The result provides evidence that bacteriochlorophyll a molecules play a crucial role in stabilizing and maintaining the B820 subunits in the dimeric state in solution. Further measurements on individual alpha- and beta-polypeptides exhibited a marked difference in aggregation property between the two polypeptides. The alpha-polypeptides appear to be uniformly dissolved in OG solution in a monomeric form, whereas the beta-polypeptides favor a self-associated form and tend to form large aggregates even in the presence of detergent. The difference in aggregation tendency was discussed in relation to the different behavior between alpha- and beta-polypeptides in reconstitution with bacteriochlorophyll a molecules.  相似文献   

12.
J P Merlie  J Lindstrom 《Cell》1983,34(3):747-757
We have studied assembly of acetylcholine receptor in vivo using subunit-specific monoclonal antibodies and immunoprecipitation with alpha-bungarotoxin and antitoxin. We have identified three distinct forms of the alpha subunit. The newly synthesized alpha subunit species has a sedimentation coefficient of 5S and is recognized only by antibody specific for SDS-denatured alpha subunit. We have called this species alpha 61. The 5S alpha Tx species is not associated with beta subunits and is probably monomeric. alpha Tx is formed from alpha 61 with a half-time of 15 min and an efficiency of approximately equal to 30%. Formation of alpha Tx involves a conformational change, and we suggest that this conformation is dependent upon or stabilized by disulfide bond formation. The assembly of alpha Tx with beta subunits (and probably gamma and delta) into a 9S complex appears to be an efficient but slow process requiring more than 90 min. Unassembled alpha 61 subunits are degraded rapidly. However, subunit degradation is a result of failure to assemble, rather than its cause.  相似文献   

13.
The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl?d, Chl?f or bacteriochlorophyll (BChl) b to replace native BChl?a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg?10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6?ps, energy transfer from Chl?a to B850 BChl?a remained highly efficient. We measured faster energy-transfer time constants for Chl?d (3.5?ps) and Chl?f (2.7?ps), which have red-shifted absorption maxima compared to Chl?a. BChl?b, red-shifted from the native BChl?a, gave extremely rapid (≤0.1?ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.  相似文献   

14.
The B800-820, or LH3, complex is a spectroscopic variant of the B800-850 LH2 peripheral light-harvesting complex. LH3 is synthesized by some species and strains of purple bacteria when growing under what are generally classed as "stressed" conditions, such as low intensity illumination and/or low temperature (<30 degrees C). The apoproteins in these complexes modify the absorption properties of the chromophores to ensure that the photosynthetic process is highly efficient. The crystal structure of the B800-820 light-harvesting complex, an integral membrane pigment-protein complex, from the purple bacteria Rhodopseudomonas (Rps.) acidophila strain 7050 has been determined to a resolution of 3.0 A by molecular replacement. The overall structure of the LH3 complex is analogous to that of the LH2 complex from Rps. acidophila strain 10050. LH3 has a nonameric quaternary structure where two concentric cylinders of alpha-helices enclose the pigment molecules bacteriochlorophyll a and carotenoid. The observed spectroscopic differences between LH2 and LH3 can be attributed to differences in the primary structure of the apoproteins. There are changes in hydrogen bonding patterns between the coupled Bchla molecules and the protein that have an effect on the conformation of the C3-acetyl groups of the B820 molecules. The structure of LH3 shows the important role that the protein plays in modulating the characteristics of the light-harvesting system and indicates the mechanisms by which the absorption properties of the complex are altered to produce a more efficient light-harvesting component.  相似文献   

15.
Peptide inhibitors corresponding to sequences in the six helix bundle structure of the fusogenic portion (gp41) of the HIV envelope glycoprotein have been successfully implemented in preventing HIV entry. These peptides bind to regions in HIV gp41 transiently exposed during the fusion reaction. In an effort to improve upon these entry inhibitors, we have successfully designed and tested peptide analogs composed of chemical spacers and reactive moieties positioned strategically to facilitate covalent attachment. Using a temperature-arrested state prime wash in vitro assay we show evidence for the trapping of a pre-six helix bundle fusion intermediate by a covalent reaction with the specific anti-HIV-1 peptide. This is the first demonstration of the trapping of an intermediate conformation of a viral envelope glycoprotein during the fusion process that occurs in live cells. The permanent specific attachment of the covalent inhibitor is projected to improve the pharmacokinetics of administration in vivo and thereby improve the long-term sustainability of peptide entry inhibitor therapy and help to expand its applicability beyond salvage therapy.  相似文献   

16.
Ito N  Matsui I  Matsui E 《The FEBS journal》2007,274(5):1340-1351
Archaeal/eukaryotic primases form a heterodimer consisting of a small catalytic subunit (PriS) and a large subunit (PriL). The heterodimer complex synthesizes primer oligoribonucleotides that are required for chromosomal replication. Here, we describe crystallographic and biochemical studies of the N-terminal domain (NTD) of PriL (PriL(NTD); residues 1-222) that bind to PriS from a hyperthermophilic archaeon, Pyrococcus horikoshii, at 2.9 A resolution. The PriL(NTD) structure consists of two subdomains, the helix-bundle and twisted-strand domains. The latter is structurally flexible, and is expected to contain a PriS interaction site. Pull-down and surface plasmon resonance analyses of structure-based deletion and alanine scanning mutants showed that the conserved hydrophobic Tyr155-Tyr156-Ile157 region near the flexible region is the PriS-binding site, as the Y155A/Y156A/I157A mutation markedly reduces PriS binding, by 1000-fold. These findings and a structural comparison with a previously reported PriL(NTD)-PriS complex suggest that the presented alternative conformations of the twisted-strand domain facilitate the heterodimer assembly.  相似文献   

17.
1. The role of disulphide-bond formation in the assembly of G2a myeloma protein 5563 was studied by pulse-labelling ascitic plasma cells of tumour-line 5563 for 2–8min. with radioactive amino acids, and analysing the intracellular proteins. Myeloma-protein determinants were first purified by ion-exchange chromatography under conditions that do not dissociate non-covalently linked sub-units of immunoglobulin G. The pulse-labelled material was then analysed by electrophoresis on polyacrylamide gels in sodium dodecyl sulphate–phosphate–urea buffer, which dissociates non-covalently linked sub-units; after gel electrophoresis, radioactive protein bands were located by radioautography, and characterized immunologically after elution. 2. Two heavy-chain intermediates were detected: (i) heavy-chain dimer; (ii) the dimer with one light chain attached. Free light chains had previously been shown to be intermediates in assembly. No evidence for the presence of half-molecules (one light chain attached to one heavy chain) was obtained. The formation of the disulphide bond between the heavy chains thus appears to precede the light-chain–heavy-chain linkage in immunoglobulin G assembly.  相似文献   

18.
Clostridium botulinum serotype D strains usually produce two types of stable toxin complex (TC), namely, the 300 kDa M (M-TC) and the 660 kDa L (L-TC) toxin complexes. We previously proposed assembly pathways for both TCs [Kouguchi, H., et al. (2002) J. Biol. Chem. 277, 2650-2656]: M-TC is composed by association of neurotoxin (NT) and nontoxic nonhemagglutinin (NTNHA); conjugation of M-TC with three auxiliary types of hemagglutinin subcomponents (HA-33, HA-17, and HA-70) leads to the formation of L-TC. In this study, we found three TC species, 410, 540, and 610 kDa TC species, in the culture supernatant of type D strain 4947. The 540 and 610 kDa TC species displayed banding patterns on SDS-PAGE similar to that of L-TC but with less staining intensity of the HA-33 and HA-17 bands than those of L-TC, indicating that these are intermediate species in the pathway to L-TC assembly. In contrast, the 410 kDa TC species consisted of M-TC and two molecules of HA-70. All of the TC species, except L-TC, demonstrated no hemagglutination activity. When the intermediate TC species were mixed with an isolated HA-33/17 complex, every TC species converted to 650 kDa L-TC with full hemagglutination activity and had the same molecular composition of L-TC. On the basis of titration analysis with the HA-33/17 complex, the stoichiometry of the HA-33/17 complex molecules in the L-TC, 610 kDa, and 540 kDa TC species was estimated as 4, 3, and 2, respectively. In conclusion, the complete subunit composition of mature L-TC is deduced to be a dodecamer assembled by a single NT, a single NTNHA, two HA-70, four HA-33, and four HA-17 molecules.  相似文献   

19.
The spindle assembly checkpoint monitors microtubule attachment to kinetochores and tension across sister kinetochores to ensure accurate division of chromosomes between daughter cells. Cytoplasmic dynein functions in the checkpoint, apparently by moving critical checkpoint components off kinetochores. The dynein subunit required for this function is unknown. Here we show that human cells depleted of dynein light intermediate chain 1 (LIC1) delay in metaphase with increased interkinetochore distances; dynein remains intact, localised and functional. The checkpoint proteins Mad1/2 and Zw10 localise to kinetochores under full tension, whereas BubR1 is diminished at kinetochores. Metaphase delay and increased interkinetochore distances are suppressed by depletion of Mad1, Mad2 or BubR1 or by re‐expression of wtLIC1 or a Cdk1 site phosphomimetic LIC1 mutant, but not Cdk1‐phosphorylation‐deficient LIC1. When the checkpoint is activated by microtubule depolymerisation, Mad1/2 and BubR1 localise to kinetochores. We conclude that a Cdk1 phosphorylated form of LIC1 is required to remove Mad1/2 and Zw10 but not BubR1 from kinetochores during spindle assembly checkpoint silencing.  相似文献   

20.
M L Doyle  G K Ackers 《Biochemistry》1992,31(45):11182-11195
Correlations between the energetics of cooperativity and quaternary structural probes have recently been made for the intermediate ligation states of Hb [Daugherty et al. (1991) Proc. Natl. Acad. Sci. US 88, 1110-1114]. This has led to a "molecular code" which translates configurations of the 10 ligation states into switch points of quaternary transition according to a "symmetry rule"; T-->R quaternary structure change is governed by the presence of at least one heme-site ligand on each of the alpha beta dimeric half-molecules within the tetramer [see Ackers et al. (1992) Science 255, 54-63, for summary]. In order to further explore this and other features of the cooperative mechanism, we have used oxygen binding to probe the energetics and cooperativities for the vacant sites of the cyanomet ligation species. We have also probed structural aspects of all eight cyanomet ligation intermediates by means of sulfhydryl reaction kinetics. Our oxygen binding results, obtained from a combination of direct and indirect methods, demonstrate the same combinatorial aspect to cooperativity that is predicted by the symmetry rule. Overall oxygen affinities of the two singly-ligated species (alpha +CN beta)(alpha beta) and (alpha beta +CN)(alpha beta) were found to be identical (pmedian = 2.4 Torr). In contrast, the doubly-ligated species exhibited two distinct patterns of oxygen equilibria: the asymmetric species (alpha +CN beta +CN)(alpha beta) showed very high cooperativity (nmax = 1.94) and low affinity (pmedian = 6.0 Torr), while the other three doubly-ligated species showed diminished cooperativity (nmax = 1.23) and considerably higher oxygen affinity (pmedian = 0.4 Torr). Extremely high oxygen affinities were found for the triply-ligated species (alpha +CN beta +CN)(alpha beta +CN) and (alpha +CN beta +CN)(alpha +CN beta) (pmedian = 0.2 Torr). Their oxygen binding free energies are considerably more favorable than those of the alpha and beta subunits within the dissociated alpha beta dimer, demonstrating directly the quaternary enhancement effect, i.e., enhanced oxygen affinity at the last binding step of tetramer relative to the dissociated protomers. Oxygen binding free energies measured for the alpha subunit within the isolated (alpha beta +CN) dimer and for the beta subunit within the isolated (alpha +CN beta) dimer sum to the free energy for binding two oxygens to normal hemoglobin dimers (-16.3 +/- 0.2 versus -16.7 +/- 0.2, respectively), arguing against cooperativity in the isolated dimer. Correlations were established between cooperative free energies of the 10 cyanomet ligation microstates and the kinetics for reacting their free sulfhydryl groups.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号