首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
两年的试验结果表明:在土壤水分胁迫下抗旱性强的小麦品种叶片的相对含水量和水势均高于抗旱性弱的品种;渗透势与水势为线性关系,水势每变动一个单位,渗透势变动0.71- 0.93个单位;渗透势与相对含水量的对数化关系为两条直线组成的一条折线,第一条直线渗透势的下降完全由渗透调节引起;第二条直线渗透势下降主要是细胞失水浓缩的结果。渗透调节能力为:秦麦3号>昌乐5号>山农587>济南13>烟农15>鲁麦5号。  相似文献   

2.
Characterization of Osmotic Restraints on Lettuce Fruit Germination   总被引:1,自引:0,他引:1  
REYNOLDS  T. 《Annals of botany》1975,39(4):791-796
Germination responses of fruits of lettuce (Lactuca sativa L.cv. Arctic King) to solutions of mannitol or potassium chlorideof different osmotic potentials were examined over a range oftemperatures in both light and dark. The upper temperature limit(‘cut-off’) for germination was progressively loweredby solutions of increasingly negative osmotic potential. Thisobservation explained inhibition of germination by solutionsof low osmotic potential at single experimental temperatures,found in previous investigations. Solutions of the two compoundshaving equal calculated osmotic potentials produced an equalinhibitory effect. No evidence for solute absorption was seen.Solutions of lower osmotic potential were needed to producethe same inhibition of germination in light against total darknessand also at lower temperatures.  相似文献   

3.
本文用PEG模拟水分亏缺对春小麦红芒麦和绵阳11号胚芽伸长过程中生长、膨压、渗透势、水势和渗透调节能力与ATP含量、能荷变化及能量代谢间的关系进行了研究。结果表明,通过降低能荷,改变分解代谢与合成代谢的比率,使渗透调节物质积累,增加了幼苗的吸水能力,从而使其在一定的ATP能量水平上维持缓慢生长;抗旱品种红芒麦在水分亏缺下成苗速率较快,能保持一定的ATP能量水平和能荷值,渗透调节和吸水能力都比较强。  相似文献   

4.
Pepper plants grown to uniform size in a controlled environment were subjected to an osmotic stress for periods of 1 to 10 days. Polyethylene glycol 400 was used as the osmotic agent. Leaf area of the plants, grown under uniform conditions, was proportional to the weight of the plants. This relationship was not altered by reduction in rate of growth due to a decrease in osmotic potential of the nutrient solution. The rate of transpiration of the pepper plants decreased as the osmotic potential of the nutrient solution was decreased. The reduction in rate of transpiration was most rapid when the osmotic potential was reduced from ?0.5 to ?7.5 bars. There was continued reduction in the rate of transpiration with change in potential to ?12.5 bar but this change was less than that at the higher potentials. The rate of transpiration remained at a reduced rate for as long as the plants were growing in the solution with low osmotic potential. Alternating the osmotic potential of the nutrient solution between ?0.5 and ?5.0 bar did not change the response to the ?5.0 tension. The reduction in rate of transpiration resulting from the lowering of the osmotic potential by addition of NaCl was similar to that produced by addition of polyethylene glycol. Water potential, osmotic potential, relative water content and stomatal movement were all in dynamic equilibrium with the water content of the leaves. The water content of the leaves was regulated by the supply and demand. In these investigations the demand remained constant. The supply was altered by decreasing the difference in water potential between leaf and substrate and by an increase in resistance to flow of water in the roots as a result of the decrease in osmotic potential of the nutrient solution.  相似文献   

5.
The possibility was considered that osmotic adjustment, the ability to accumulate solutes in response to water stress, may contribute to growth rate differences among closely-related genotypes of trees. Progeny variation in osmotic adjustment and turgor regulation was investigated by comparing changes in osmotic and pressure potentials, soluble carbohydrates, and amino acids in osmotically stressed seedlings in 4 full-sib progenies of black spruce [ Picea mariana (Mill.) B. S. P.] that differed in growth rate under drought. Osmotic stress was induced by a stepwise increase in the concentration of polyethylene glycol (PEG)-3350 from 10 (w/v) to 18 and 25%, which provided osmotic potentials in solution culture of -0.4, -1.0 and -2.0 MPa each for 3 days. All 4 progenies maintained a positive cell turgor even at 25% PEG, due to a significant decline in osmotic potential. Although total amino acids, principally proline, increased, ca 60% of the decrease in osmotic potential was attributable to soluble carbohydrates and glucose was the major osmoregulating solute. There was little progeny variation in any of measured parameters in unstressed seedlings. Compared to two slower-growing progenies, the two progenies capable of more vigorous growth under drought in the field accumulated more soluble carbohydrates (mainly glucose and fructose), developed lower osmotic potential and maintained higher turgor pressure when osmotically-stressed in solution culture. The ability to adjust osmotically and maintain turgor under drought stress could thus be a useful criterion for the early selection of faster-growing, drought-tolerant genotypes.  相似文献   

6.
The significance of the osmotic potential of the seed apoplast sap as a regulator of assimilate transfer to and within coats of developing seed of Vicia faba (cv. Coles Prolific) was assessed using attached empty seed coats and intact developing seed. Following surgical removal of the embryos, through windows cut in the pod walls and underlying seed coats, the resulting attached “empty” seed coats were filled with solutions of known osmotic potentials (–0. 02 versus –0. 75 MPa). Sucrose efflux from the coats was elevated at the higher osmotic potential (high osmotic concentration) for the first 190 min of exchange. Thereafter, this efflux was depressed relative to efflux from coats exposed to the low osmotic potential (high osmotic concentration) solution. This subsequent reversal in efflux was attributable to an enhanced diminution of the coat sucrose pools at the high external osmotic potential. Indeed, when expressed as a proportion of the current sucrose pool size, relative efflux remained elevated for coats exposed to the high osmotic potential solution. Measurement of potassium and sucrose fluxes to and from their respective pools in the coat tissues demonstrated that the principal, fluxes, sensitive to variative in the external osmotic potential, were phloem import into and efflux from the “empty” coats. Phloem import, consistent with a pressure-driven phloem transport mechanism, responded inversely with changes in the external osmotic potential. In contrast, sucrose and potassium efflux from the coats exhibited a positive dependence on the osmotic potential. Growth rates of whole seed were approximately doubled by enclosing selected pods in water jackets held at temperatures of 25°C. compared to 15°C. The osmotic potential of sap collected from the seed apoplast remained constant and independent of the temperature-induced changes in seed growth rates and hence phloem import. Based on these findings, it is proposed that control of phloem import by changes in the external osmotic potential observed with “empty” seed coats has no significance as a regulator of assimilate import by intact seed. Rather, maintenance of the seed apoplast osmotic potential, independent of seed growth rate, suggests that the observed osmotic regulation of efflux from the coats may play a key role in integrating assimilate demand by the embryo with phloem import.  相似文献   

7.
8.
陈士超  王猛  汪季  高永  刘宗奇  王香 《生态学杂志》2017,28(9):2923-2931
用不同质量浓度PEG6000(0%、5%、10%、15%、20%、25%、30%,渗透势分别为0、-0.06、-0.17、-0.32、-0.53、-0.79、-1.10 MPa)控制渗透势,研究紫花苜蓿种子萌发及幼苗生理特性对不同渗透势的响应.结果表明: 种子5项萌发指标均随渗透势降低呈先升后降趋势,-0.06 MPa时萌发指数和活力指数最高,-0.17 MPa时发芽率、发芽势和发芽指数最高;幼苗过氧化物酶、超氧化物歧化酶、过氧化氢酶活性和叶绿素含量均随渗透势降低呈先升后降趋势,-0.17 MPa时各指标值最高;叶绿素a/b随渗透势降低呈先降后升趋势,-0.06 MPa时最低;游离脯氨酸、丙二醛含量和相对电导率随渗透势降低而持续升高.渗透势为-0.06~-0.17 MPa时,种子萌发和幼苗生理综合评价结果最优,是最适宜种子萌发的渗透势条件,而当渗透势低于-0.79 MPa时,对种子萌发产生抑制.  相似文献   

9.
A model of the effects of water stress on seed advancement and germination   总被引:1,自引:0,他引:1  
A model of seed germination is proposed which uses a variable with the units of an osmotic potential (virtual osmotic potential) to integrate the effect of a constant or a varying water potential. This differs from existing models that describe the effects of fixed water potentials on germination, or the effects of fixed priming water potentials on the subsequent germination at a fixed water potential. When a seed is sown, the virtual osmotic potential is assumed to fall at a rate that depends on the ambient water potential, and on the difference between its current and a minimum value. Radicle growth is assumed to initiate when the difference between the ambient water potential and the virtual osmotic potential exceeds a threshold. The germination of carrot and onion seeds at various fixed potentials below 0 MPa was well described by the virtual osmotic potential model. The model was also used to simulate the results of experiments in which seeds were given a single step change in water potential.  相似文献   

10.
Low soil water content (low matric potential) and salinity (low osmotic potential) occur frequently in soils, particularly in arid and semi-arid regions. Although the effect of low matric or low osmotic potential on soil microorganisms have been studied before, this is the first report which compares the effect of the two stresses on microbial activity and community structure. A sand and a sandy loam, differing in pore size distribution, nutrient content and microbial biomass and community structure, were used. For the osmotic stress experiment, salt (NaCl) was added to achieve osmotic potentials from ?0.99 to ?13.13 MPa (sand) and from ?0.21 to 3.41 MPa (sandy loam) after which the soils were pre-incubated at optimal water content for 10d. For the matric stress experiment, soils were also pre-incubated at optimal water content for 10d, after which the water content was adjusted to give matric potentials from ?0.03 and ?1.68 MPa (sand) and from ?0.10 to 1.46 MPa (sandy loam). After amendment with 2% (w/w) pea straw (C/N 26), soil respiration was measured over 14d. Osmotic potential decreased with decreasing soil water content, particularly in the sand. Soil respiration decreased with decreasing water potential (osmotic?+?matric). At a given water potential, respiration decreased to a greater extent in the matric stress experiment than in the osmotic stress experiment. Decreasing osmotic and matric potential reduced microbial biomass (sum of phospholipid fatty acids measured after 14 days) and changed microbial community structure: fungi were less tolerant to decreasing osmotic potential than bacteria, but more tolerant to decreasing water content. It is concluded that low matric potential may be more detrimental than a corresponding low osmotic potential at optimal soil water content. This is likely to be a consequence of the restricted diffusion of substrates and thus a reduced ability of the microbes to synthesise osmolytes to help maintain cell water content. The study also highlighted that it needs to be considered that decreasing soil water content concentrates the salts, hence microorganisms in dry soils are exposed to two stressors.  相似文献   

11.
The possible involvement of auxin in the action of gibberellin in stimulating cell elongation was examined by comparing the effects of gibberellic acid (GA) and IAA on the growth, osmoregulation and cell wall properties of the Alaska pea ( Pisum sativum L. cv. Alaska) subhook. Both GA and IAA stimulated cell elongation in the subhook region of derooted cuttings. Cotyledon excision decreased the stimulating effect of GA on the growth of the subhook region, but did not affect that of IAA. As the subhook region elongated, the osmotic potential of the cell sap and the total amount of osmotic solutes increased. Cotyledon excision accelerated the increase in the osmotic potential and suppressed the accumulation of osmotic solutes. In cuttings with cotyledons. GA partly counteracted the increase in the osmotic potential and substantially promoted the accumulation of osmotic solutes. On the other hand, in cuttings without cotyledons. GA did not affect the change in the osmotic potential although it slightly promoted the accumulation of osmotic solutes. IAA accelerated the increase in the osmotic potential, but did not affect the accumulation of osmotic solutes. IAA enhanced the extensibility of the cell wall, while GA did not affect it. These results suggest that at least in the Alaksa pea subhook region. GA does not stimulate cell elongation by affecting the level of auxin.  相似文献   

12.
Summary A study of photodormant lettuce embryos germinating in water showed that red light induces an increased rate of water uptake. Determinations of the water potential, carried out by a modified gravimetric technique which eliminates errors introduced by solute penetration into cellular osmotic space, showed that the water potential of embryos germinating in water after dark and red light treatment was equivalent and equal to the osmotic potential of a 0.0 to 0.1 molal mannitol solution. Osmotic potentials of the embryos were determined using two new methods. One of the methods utilizes penetration of deuterated water; the other, penetration of a labeled osmoticum into the tissue. For both light- and dark-treated embryos in water, the osmotic potential was equivalent to that of a 0.34 to 0.41 molal mannitol solution. Lettuce embryos thus require that turgor pressure reach a threshold considerably above zero before growth can occur.  相似文献   

13.
The diurnal and seasonal changes in plant water relations of two Japonica rice ( Oryza sativa L.) cultivars, Nipponbare and Tachiminori, were studied under flooded conditions at Kyoto University. The dryland cv. Tachiminori maintained higher predawn and midday leaf osmotic potentials relative to the wetland cv. Nipponbare during the vegetative stage, but the ranking was reversed after flowering. The relationship between leaf water potential and leaf osmotic potential showed that prior to panicle emergence Nipponbare was able to adjust osmotically to maintain turgor, whereas after heading there was little turgor maintenance. Tachiminori showed little difference in osmotic adjustment before and after panicle emergence. Fertilizer treatment during panicle development also helped to maintain the degree of osmotic adjustment in both cultivars.  相似文献   

14.
The results of the experiment showed that leaf elongation rate in two wheat cultivars decreased under soil water stress. Rewatering after water stress, growth restoration.of “Changle No.5” was faster than that of “Lumai No.5”. The osmotic adjustment ability of leaves in these two wheat cultivars increased to 0.41MPa for “Changle No.5” and 0.33MPa for “Lumai No.5” as water potential decreased. At the same leaf elongation rate water potential and osmotic potential of “Changle No5” decreased more than that of “Lumai No.5” Leaf elongation rate fell to zero as water potential and osmotic potential were –1.50MPa and –1.70MPa for “Changle No.5” and –1.20MPa and –1.30MPa for “Lumai No.5” The threshold turgor pressure of elongation growth in leaf cell was different being 0.22MPa for “Changle No.5’ and 0.15MPa for “Lumai No.5”. The difference in the gross extensible coefficient of growing leaf was very small.  相似文献   

15.
Osmotic adjustment in leaves of sorghum in response to water deficits   总被引:17,自引:12,他引:17       下载免费PDF全文
Jones MM 《Plant physiology》1978,61(1):122-126
The relationships among the total water potential, osmotic potential, turgor potential, and relative water content were determined for leaves of sorghum (Sorghum bicolor [L.] Moench cvs. `RS 610' and `Shallu') with three different histories of water stress. Plants were adequately watered (control), or the soil was allowed to dry slowly until the predawn leaf water potential reached either −0.4 megapascal (MPa) (treatment A) or −1.6 MPa (treatment B). Severe soil and plant water deficits developed sooner after cessation of watering in `Shallu' than in `RS 610', but no significant differences in osmotic adjustment or tissue water relations were observed between the two cultivars. In both cultivars, the stress treatments altered the relationship between leaf water potential and relative water content, resulting in the previously stressed plants maintaining higher tissue water contents than control plants at the same leaf water potential. The osmotic potential at full turgor in the control sorghum was −0.7 MPa: stress pretreatment significantly lowered the osmotic potential to −1.1 and −1.6 MPa in stress treatments A and B, respectively. As a result of this osmotic adjustment, leaf turgor potentials at a given value of leaf water potential exceeded those of the control plants by 0.15 to 0.30 MPa in treatment A and by 0.5 to 0.65 MPa in treatment B. However, zero turgor potential occurred at approximately the same value of relative water content (94%) irrespective of previous stress history. From the relationship between turgor potential and relative water content there was an approximate doubling of the volumetric elastic modulus, i.e. a halving of tissue elasticity, as a result of stress preconditioning. The influence of stress preconditioning on the moisture release curve is discussed.  相似文献   

16.
The water relations of pepper plants (Capsicum frutescens L.) under conditions conducive to guttation were studied to evaluate the control of plant water stress with polyethylene glycols. The addition of polyethylene glycol 6000 to the nutrient solution resulted in water relations similar to those expected in soil at the same water potentials. Specifically, xylem pressure potential in the root and leaf became more negative during a 24-hour treatment period, while osmotic potential of the root xylem sap remained constant. The decrease in pressure potential was closely correlated with the decrease in osmotic potential of the nutrient solution. In contrast, the addition of polyethylene glycol 400 to the nutrient medium resulted in a reduction of osmotic potential in the root xylem sap; this osmotic adjustment in the xylem was large enough to establish an osmotic gradient for entry of water and cause guttation at a nutrient solution osmotic potential of −4.8 bars. Pressure potential in the root and leaf xylem became negative only at nutrient solution osmotic potentials lower than −4.8 bars. About half of the xylem osmotic adjustment in the presence of polyethylene glycol 400 was caused by increased accumulation of K+, Na+, Ca2+, and Mg2+ in the root xylem. These studies indicate that larger polyethylene glycol molecules such as polyethylene glycol 6000 are more useful for simulating soil water stress than smaller molecules such as polyethylene glycol 400.  相似文献   

17.
This study was conducted to determine the effect of osmotic potential in a modified 85D12 medium on both callus induction and plant regeneration in the anther culture of two wheat genotypes, cv. Chris and cv. Pavon. Altering the medium osmotic potential by changing the carbohydrate source and concentration or by adding a non-metabolized osmoticum appeared to have the greatest potential for improving anther-derived green plant production. The medium osmotic potentials were varied (-0.67 to –2.30 MPa) by altering sucrose and PEG concentration. Both osmotica affected callus production, with –0.9 to –1.4 MPa media producing the most calluses. Callus production depended on genotype and osmoticum. Only PEG concentration affected green plant regeneration. The greatest number of green plants (11.5 plants per 100 anthers in cv. Chris) was obtained with 0.0125 M of PEG. This experiment suggested that a low level of PEG in the medium was beneficial for producing green plants from wheat anthers.  相似文献   

18.
The Role of the Epidermal Cells in the Stomatal Movements   总被引:5,自引:0,他引:5  
The water deficit of the leaves, the osmotic values of the stomatal cells and epidermal cells at incipiment plasmolysis, as well as the width of the stomatal apparatus and pore opening, were measured every hour from 6-17 o'clock under natural environmental conditions. During the noon hours, the intensity of light in clear weather ranged from 40,000-55,000 lux in the open position, and from 15,000-20,000 lux in the shade. The temperature was usually 15–20°C. The experimental object was Vicia Faba growing in a field, both plants freely rooted and plants in pots buried in the soil. The experiments resulted in the following observations and conclusions: 1. When leaves are exposed to strong light, the osmotic value at incipient plasmolysis changes not only in the guard cells, but also in the epidermal cells. If the epidermal cells' osmotic value rises, water is sucked from the guard cells and their uptake of water by suction is decreased, which promotes closure and counteracts opening, respectively. If the value falls, the effect is the reverse. The guard cells react passively to these epidermal changes. The passive stomatal movement eliciteed in this way has therefore been denoted as “osmopassive”, in contrast to the long known passive movement caused by a change in turgor of the epidermal cells, and which has therefore been denoted as “turgorpasslve”. The osmopassive component of stomatal closure has an earlier and more rapid onset than the hydroactive closing reaction, which consists of a decrease in the guard cells' osmotic value. Stomatat closure often starts with the osmopassive rapid process, and is completed and stabilized by the hydroactive process. It has not been possible to determine whether the osmopassive closing reaction is identical with the rapid reaction previously described, and interpreted as of adenoid nature, and tlius belonging to the active group. 2. The osmotic potential of the guard cells - i.e., the difference between the osmotic value of guard cells and epidermal cells at incipient plasmolysis - is, therefore, formed not only by a cbange in the osmotic value of the former cells, but also by a cbange in that of the latter. 3. Although the pore width runs largely parallel to the osmotic value of the guard cells, there is greater agreement between pore width and osmotic potential. When the water deficit of the leaf exceeds a certain threshold value, potential and stomatal width start to decrease. Closure is completed when the fall in potential approaches the zero value. If the water deficit subsequently continues to increase, the potential becomes negative and the stomata remain closed. 4. The stomatal movements are regulated by physiological processes which form two kinds of equilibrium between increase and decrease of the osmotic potential of the guard cells, i.e. the osmopassive increase - osmopassive decrease and the photoactive increase - hydroactive decrease. These equilibria complement each other in rate and stability. The osmopassive processes start rapidly and as soon as the deficit cbanges; hydroactive closure and sometimes also photoactive opening, are, on the contrary, time-consuming. When the water deficit is suboptimal, turgorpassive opening and closing are superadded, but only in those cases in which the osmotic potential of the guard cetls is positive.  相似文献   

19.
等渗的盐分和水分胁迫对杠柳种子萌发的影响   总被引:6,自引:3,他引:3  
马闯  张文辉  刘新成 《植物研究》2008,28(4):465-470
通过等渗的NaCl和PEG溶液模拟盐分和水分胁迫,设置渗透梯度,在控制条件下对杠柳种子的萌发过程中总萌发率、幼苗鲜重、胚根生长、种子活力、发芽值等指标系统研究,对种子萌发率与渗透势之间关系进行回归分析,主要结果包括:(1)杠柳种子萌发过程中总萌发率、幼苗鲜重、活力指数和发芽值四项指标均随NaCl和PEG溶液的渗透势降低逐渐下降,综合研究活力指数和发芽值表明渗透势≥-0.5 MPa和≤-1.4 MPa时,PEG对种子萌发抑制作用大于NaCl,其他情况相反;(2)杠柳种子逐日萌发率和胚根日变化研究表明,与NaCl相比,PEG推迟杠柳种子萌发,并且对胚根增长抑制作用较大;(3)建立盐分和水分胁迫条件下种子萌发率与渗透势回归方程,发现杠柳种子在PEG胁迫下的萌发临界值和极限值为-1.0和-1.4 MPa,在NaCl胁迫下是-0.9和-1.3 MPa,解除胁迫条件,不同处理的杠柳种子复水萌发率均达到100%。说明杠柳具有良好的耐盐抗旱的特性。  相似文献   

20.
Critical Water Potential for Stomatal Closure in Sitka Spruce   总被引:1,自引:0,他引:1  
Steady state rates of net photosynthesis and stomatal conductance at high water potentials were measured under controlled conditions in a leaf chamber on Sitka spruce [Picea sitchensis (Bong.) Carr.] shoots detached from the forest canopy or on seedlings. The water supply to the seedlings was terminated by excision and the shoot water potential (or critical water potential) and osmotic potential at the onset of stomatal closure measured. The turgor potential was calculated. The initial osmotic potential before insertion of the shoot into the chamber was also measured. Shoot water potential and osmotic potential at stomatal closure, and initial osmotic potential were significantly higher (less negative) in foliage from the lowest level in the canopy compared with foliage in the upper canopy, and higher in shoots of seedlings transferred to low light than in those at high light. Critical water potential also varied with season, being higher in July than in October and November. In all except one instance, turgor potential at the onset of stomatal closure was negative, possibly because of dilution of the cell sap by the extracellular water during the estimate of osmotic potential. Over all the experiments variation in critical water potential was correlated with variation in critical osmotic potential and, to a lesser extent, the initial osmotic potential. However, turgor potential at the critical potential varied from +0.6 to -4.6 bar. This suggests that difference in turgor between the guard cells and subsidiary cells, which controls stomatal aperture, is only loosely coupled with the bulk leaf turgor and hence that bulk leaf turgor is not a good index of the turbor relations of the guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号