首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although CD4 T cells are required for host resistance to Mycobacterium tuberculosis, they may also contribute to pathology. In this study, we examine the role of the inhibitory receptor PD-1 and its ligand PD-L1 during M. tuberculosis infection. After aerosol exposure, PD-1 knockout (KO) mice develop high numbers of M. tuberculosis-specific CD4 T cells but display markedly increased susceptibility to infection. Importantly, we show that CD4 T cells themselves drive the increased bacterial loads and pathology seen in infected PD-1 KO mice, and PD-1 deficiency in CD4 T cells is sufficient to trigger early mortality. PD-L1 KO mice also display enhanced albeit less severe susceptibility, indicating that T cells are regulated by multiple PD ligands during M. tuberculosis infection. M. tuberculosis-specific CD8 T cell responses were normal in PD-1 KO mice, and CD8 T cells only had a minor contribution to the exacerbated disease in the M. tuberculosis-infected PD-1 KO and PD-L1 KO mice. Thus, in the absence of the PD-1 pathway, M. tuberculosis benefits from CD4 T cell responses, and host resistance requires inhibition by PD-1 to prevent T cell-driven exacerbation of the infection.  相似文献   

2.
Adaptive immunity to Mycobacterium tuberculosis controls progressive bacterial growth and disease but does not eradicate infection. Among CD4+ T cells in the lungs of M. tuberculosis-infected mice, we observed that few produced IFN-γ without ex vivo restimulation. Therefore, we hypothesized that one mechanism whereby M. tuberculosis avoids elimination is by limiting activation of CD4+ effector T cells at the site of infection in the lungs. To test this hypothesis, we adoptively transferred Th1-polarized CD4+ effector T cells specific for M. tuberculosis Ag85B peptide 25 (P25TCRTh1 cells), which trafficked to the lungs of infected mice and exhibited antigen-dependent IFN-γ production. During the early phase of infection, ~10% of P25TCRTh1 cells produced IFN-γ in vivo; this declined to <1% as infection progressed to chronic phase. Bacterial downregulation of fbpB (encoding Ag85B) contributed to the decrease in effector T cell activation in the lungs, as a strain of M. tuberculosis engineered to express fbpB in the chronic phase stimulated P25TCRTh1 effector cells at higher frequencies in vivo, and this resulted in CD4+ T cell-dependent reduction of lung bacterial burdens and prolonged survival of mice. Administration of synthetic peptide 25 alone also increased activation of endogenous antigen-specific effector cells and reduced the bacterial burden in the lungs without apparent host toxicity. These results indicate that CD4+ effector T cells are activated at suboptimal frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by providing one or more epitope peptides may be a successful strategy for TB therapy.  相似文献   

3.
We previously reported that CCR2(-/-) mice are susceptible to Mycobacterium tuberculosis infection. Susceptibility was associated with an early and sustained macrophage trafficking defect, followed by delayed recruitment of dendritic cells (DCs) and T cells to the lungs. However, the relative importance of the lack of CCR2 expression by macrophages and DCs vs T cells in susceptibility to infection was unclear. In this study, we used mixed bone marrow transplantation to create mice in which the genotype of the T cells was either CCR2(+/+) or CCR2(-/-) while maintaining the genotype of the myeloid cells as CCR2(+/+). After infection with M. tuberculosis, we found that the genotype of the macrophages and/or DCs, but not that of the T cells, was critical for both T cell and myeloid cell migration to the lungs. Further investigation revealed a critical role for CCR2 in the recruitment of F4/80(dim) macrophages and CD11c(dim/intermediate) DCs to the infected lung.  相似文献   

4.
To confirm the primary role of CD4 T cells in pulmonary tuberculosis, mice with a disruption of their CD4 gene (CD4 KO) were exposed to an aerosol of Mycobacterium tuberculosis and survival, cellular responses in the lung and granuloma development followed. CD8 and NK cells from the lungs of infected CD4 KO mice expressed IFN-gamma and were recruited in numbers similar to those seen in the C57BL/6 mice; recruitment correlated with initial control of bacteria. The major defect in mice lacking CD4 was the significant reduction in total cellular recruitment into the lungs. CD4 KO mice did not generate the typical mononuclear granulomatous lesions, instead the cellular influx was macrophage in character and was localized as perivascular cuffing. Early control of M. tuberculosis growth is therefore independent of CD4+ cells but such cells are required to ensure recruitment of mononuclear cells to the lung and thus ensure long-term survival.  相似文献   

5.
NOD2/CARD15 mediates innate immune responses to mycobacterial infection. However, its role in the regulation of adaptive immunity has remained unknown. In this study, we examined host defense, T cell responses, and tissue pathology in two models of pulmonary mycobacterial infection, using wild-type and Nod2-deficient mice. During the early phase of aerosol infection with Mycobacterium tuberculosis, Nod2(-/-) mice had similar bacterial counts but reduced inflammatory response on histopathology at 4 and 8 wk postchallenge compared with wild-type animals. These findings were confirmed upon intratracheal infection of mice with attenuated Mycobacterium bovis bacillus Calmette-Guérin. Analysis of the lungs 4 wk after bacillus Calmette-Guérin infection demonstrated that Nod2(-/-) mice had decreased production of type 1 cytokines and reduced recruitment of CD8(+) and CD4(+) T cells. Ag-specific T cell responses in both the spleens and thoracic lymph nodes were diminished in Nod2(-/-) mice, indicating impaired adaptive antimycobacterial immunity. The immune regulatory role of NOD2 was not restricted to the lung since Nod2 disruption also led to reduced type 1 T cell activation following i.m. bacillus Calmette-Guérin infection. To determine the importance of diminished innate and adaptive immunity, we measured bacterial burden 6 mo after aerosol infection with M. tuberculosis and followed a second infected group for assessment of survival. Nod2(-/-) mice had a higher bacterial burden in the lungs 6 mo after infection and succumbed sooner than did wild-type controls. Taken together, these data indicate that NOD2 mediates resistance to mycobacterial infection via both innate and adaptive immunity.  相似文献   

6.
The control of acute and chronic Mycobacterium tuberculosis infection is dependent on CD4(+) T cells. In a variety of systems CD8(+) T cell effector responses are dependent on CD4(+) T cell help. The development of CD8(+) T cell-mediated immune responses in the absence of CD4(+) T cells was investigated in a murine model of acute tuberculosis. In vitro and in vivo, priming of mycobacteria-specific CD8(+) T cells was unaffected by the absence of CD4(+) T cells. Infiltration of CD8(+) T cells into infected lungs of CD4(-/-) or wild-type mice was similar. IFN-gamma production by lung CD8(+) T cells in CD4(-/-) and wild-type mice was also comparable, suggesting that emergence of IFN-gamma-producing mycobacteria-specific CD8(+) T cells in the lungs was independent of CD4(+) T cell help. In contrast, cytotoxic activity of CD8(+) T cells from lungs of M. tuberculosis-infected mice was impaired in CD4(-/-) mice. Expression of mRNA for IL-2 and IL-15, cytokines critical for the development of cytotoxic effector cells, was diminished in the lungs of M. tuberculosis-infected CD4(-/-) mice. As tuberculosis is frequently associated with HIV infection and a subsequent loss of CD4(+) T cells, understanding the interaction between CD4(+) and CD8(+) T cell subsets during the immune response to M. tuberculosis is imperative for the design of successful vaccination strategies.  相似文献   

7.
Mycobacterium tuberculosis promotes its replication by inhibiting the apoptosis of infected macrophages. A proapoptotic M.?tuberculosis mutant lacking nuoG, a subunit of the type I NADH dehydrogenase complex, exhibits attenuated growth in?vivo, indicating that this virulence mechanism is essential. We show that M.?tuberculosis also suppresses neutrophil apoptosis. Compared to wild-type, the nuoG mutant spread to a larger number of lung phagocytic cells. Consistent with the shorter lifespan of infected neutrophils, infection with the nuoG mutant resulted in fewer bacteria per infected neutrophil, accelerated bacterial acquisition by dendritic cells, earlier trafficking of these dendritic cells to lymph nodes, and faster CD4 T?cell priming. Neutrophil depletion abrogated accelerated CD4 T?cell priming by the nuoG mutant, suggesting that inhibiting neutrophil apoptosis delays adaptive immunity in tuberculosis. Thus, pathogen modulation of apoptosis is beneficial at multiple levels, and enhancing phagocyte apoptosis promotes CD4 as well as CD8 T?cell responses.  相似文献   

8.
Immunity to Mycobacterium tuberculosis infection is critically dependent on the timely priming of T effector lymphocytes and their efficient recruitment to the site of mycobacterial implantation in the lung. E-, P-, and L-selectin counterreceptors control lymphocyte homing to lymph nodes and leukocyte trafficking to peripheral sites of acute inflammation, their adhesive function depending on fucosylation by fucosyltransferases (FucT) IV and VII. To address the relative importance of differentially glycosylated selectin counterreceptors for priming of T cell effector functions in a model of mycobacteria-induced granulomatous pulmonary inflammation, we used aerosol-borne M. tuberculosis to infect FucT-IV-/-, FucT-VII-/-, FucT-IV-/-/FucT-VII-/-, or wild-type control mice. In lymph nodes, infected FucT-IV-/-/FucT-VII-/- and, to a lesser extent, FucT-VII-/- mice had severely reduced numbers of T cells and reduced Ag-specific effector responses. By contrast, recruitment of activated T cells into the lungs was similar in all four groups of mice during infection and expression of T cell, and macrophage effector functions were only delayed in lungs of FucT-IV-/-/FucT-VII-/- mice. Importantly, lungs from all groups expressed CXCL13, CCL21, and CCL19 and displayed organized follicular neolymphoid structures after infection with M. tuberculosis, which suggests that the lung served as a selectin ligand-independent priming site for immune responses to mycobacterial infection. All FucT-deficient strains were fully capable of restricting M. tuberculosis growth in infected organs until at least 150 days postinfection. Our observations indicate that leukocyte recruitment functions dictated by FucT-IV and FucT-VII-dependent selectin ligand activities are not critical for inducing or maintaining T cell effector responses at levels necessary to control pulmonary tuberculosis.  相似文献   

9.
Whether true memory T cells develop in the face of chronic infection such as tuberculosis remains controversial. To address this question, we studied CD8+ T cells specific for the Mycobacterium tuberculosis ESAT6-related Ags TB10.3 and TB10.4. The shared epitope TB10.3/10.4(20-28) is presented by H-2 K(d), and 20-30% of the CD8+ T cells in the lungs of chronically infected mice are specific for this Ag following respiratory infection with M. tuberculosis. These TB10.3/10.4(20-28)-specific CD8+ T cells produce IFN-gamma and TNF and express CD107 on their cell surface, which indicates their likely role as CTL in vivo. Nearly all of the Ag-specific CD8+ T cells in the lungs of chronically infected mice had a T effector cell phenotype based on their low expression of CD62L and CD45RB. In contrast, a population of TB10.3/10.4(20-28)-specific CD8+ T cells was identified in the lymphoid organs that express high levels of CD62L and CD45RB. Antibiotic treatment to resolve the infection led to a contraction of the Ag-specific CD8+ T cell population and was accompanied by an increase in the proportion of CD8+ T cells with a central memory phenotype. Finally, challenge of memory-immune mice with M. tuberculosis was accompanied by significant expansion of TB10.3/10.4(20-28)-specific CD8+ T cells, which suggests that these cells are in fact functional memory T cells.  相似文献   

10.
In this study, we evaluated the cellular influx and cytokine environment in the lungs of mice made immune by prior vaccination with Mycobacterium bovis bacillus Calmette-Guérin compared with control mice after infection with Mycobacterium tuberculosis to characterize composition of protective lesions in the lungs. Immune mice controlled the growth of the M. tuberculosis challenge more efficiently than control mice. In immune animals, granulomatous lesions were smaller and had a more lymphocytic core, less foamy cells, less parenchymal inflammation, and slower progression of lung pathology than in lungs of control mice. During the chronic stage of the infection, the bacterial load in the lungs of immune mice remained at a level 10 times lower than control mice, and this was associated with reduced numbers of CD4P(+P) and CD8P(+P) T cells, and the lower expression of protective (IL-12, IFN-gamma), inflammatory (TNF-alpha), immunoregulatory (GM-CSF), and immunosuppressive (IL-10) cytokines. The immune mice had higher numbers of CD11b- CD11c(high) DEC-205(low) alveolar macrophages, but lower numbers of CD11b+ CD11c(high) DEC-205(high) dendritic cells, with the latter expressing significantly lower levels of the antiapoptotic marker TNFR-associated factor-1. Moreover, during the early stage of chronic infection, lung dendritic cells from immune mice expressed higher levels of MHC class II and CD40 molecules than similar cells from control mice. These results indicate that while a chronic disease state is the eventual outcome in both control and immune mice infected with M. tuberculosis by aerosol exposure, immune mice develop a protective granulomatous lesion by increasing macrophage numbers and reduced expression of protective and inflammatory cytokines.  相似文献   

11.
We have investigated whether both primary CD8 T cell activation and CD8 T cell-mediated protection from Mycobacterium tuberculosis challenge could occur in mycobacterial-vaccinated CD4 T cell-deficient (CD4KO) mice. Different from wild-type C57BL/6 mice, s.c. vaccination with bacillus Calmette-Guérin (BCG) in CD4KO mice failed to provide protection from secondary M. tuberculosis challenge at 3 wk postvaccination. However, similar to C57BL/6 mice, CD4KO mice were well protected from M. tuberculosis at weeks 6 and 12 postvaccination. This protection was mediated by CD8 T cells. The maintenance of protective effector/memory CD8 T cells in CD4KO mice did not require the continuous presence of live BCG vaccine. As in C57BL/6 mice, similar levels of primary activation of CD8 T cells in CD4KO mice occurred in the draining lymph nodes at 3 wk after BCG vaccination, but different from C57BL/6 mice, the distribution of these cells to the spleen and lungs of CD4KO mice was delayed, which coincided with delayed acquisition of protection in CD4KO mice. Our results suggest that both the primary and secondary activation of CD8 T cells is CD4 T cell independent and that the maintenance of these CD8 T cells is also independent of CD4 T cells and no longer requires the presence of live mycobacteria. However, the lack of CD4 T cells may result in delayed distribution of activated CD8 T cells from draining lymph nodes to distant organs and consequently a delayed acquisition of immune protection. Our findings hold implications in rational design of tuberculosis vaccination strategies for humans with impaired CD4 T cell function.  相似文献   

12.
CD4 T cells are important in the protective immune response against tuberculosis. Two mouse models deficient in CD4 T cells were used to examine the mechanism by which these cells participate in protection against Mycobacterium tuberculosis challenge. Transgenic mice deficient in either MHC class II or CD4 molecules demonstrated increased susceptibility to M. tuberculosis, compared with wild-type mice. MHC class II-/- mice were more susceptible than CD4-/- mice, as measured by survival following M. tuberculosis challenge, but the relative resistance of CD4-/- mice did not appear to be due to increased numbers of CD4-8- (double-negative) T cells. Analysis of in vivo IFN-gamma production in the lungs of infected mice revealed that both mutant mouse strains were only transiently impaired in their ability to produce IFN-gamma following infection. At 2 wk postinfection, IFN-gamma production, assessed by RT-PCR and intracellular cytokine staining, in the mutant mice was reduced by >50% compared with that in wild-type mice. However, by 4 wk postinfection, both mutant and wild-type mice had similar levels of IFN-gamma mRNA and protein production. In CD4 T cell-deficient mice, IFN-gamma production was due to CD8 T cells. Thus, the importance of IFN-gamma production by CD4 T cells appears to be early in infection, lending support to the hypothesis that early events in M. tuberculosis infection are crucial determinants of the course of infection.  相似文献   

13.
Long-term survival of mice infected with Mycobacterium tuberculosis is dependent upon IFN-gamma and T cells, but events in early phases of the immune response are not well understood. In this study, we describe a role for B cells during early immune responses to infection with a clinical isolate of M. tuberculosis (CDC 1551). Following a low-dose infection with M. tuberculosis CDC 1551, similar numbers of bacteria were detected in the lungs of both B cell knockout (IgH 6-, BKO) and C57BL/6J (wild-type) mice. However, despite comparable bacterial loads in the lungs, less severe pulmonary granuloma formation and delayed dissemination of bacteria from lungs to peripheral organs were observed in BKO mice. BKO mice reconstituted with naive B cells, but not those given M. tuberculosis-specific Abs, before infection developed pulmonary granulomas and dissemination patterns similar to wild-type animals. Further analysis of lung cell populations revealed greater numbers of lymphocytes, especially CD8+ T cells, macrophages, and neutrophils in wild-type and reconstituted mice than in BKO mice. Thus, less severe lesion formation and delayed dissemination of bacteria found in BKO mice were dependent on B cells, not Abs, and were associated with altered cellular infiltrate to the lungs. These observations demonstrate an important, previously unappreciated, role for B cells during early immune responses to M. tuberculosis infections.  相似文献   

14.
To address the role of CD1d in mucosal immune regulation in bacterial infection, we infected CD1d KO mice with Listeria monocytogenes (Lm). A higher systemic bacterial burden associated with inflammatory lymphocytic infiltrations within the intestine was found in CD1d KO compared with wild type (WT) mice. Lm induced strong IFN-gamma mRNA expression in the liver of WT and the intestine of CD1d KO mice, thus demonstrating the dual, opposing immune activities of IFN-gamma in Lm infection that is dependent on CD1d and/or NKT cells. Analysis of hepatic T cell population demonstrated a reduction of NK1.1(+)TCRbeta+ cells in both mice, followed by recovery only in WT mice. Last, the proportion of alpha4beta1 integrin on lung lymphocytes from CD1d KO was dramatically increased compared with WT mice. Thus, the absence of CD1d resulted in increased susceptibility towards Listeria infection, induced changes in NKT cells, and increased trafficking of alpha4beta1 molecule to inflamed lung.  相似文献   

15.
Although IFN-gamma is necessary for survival of Mycobacterium tuberculosis infection in people and animal models, it may not be sufficient to clear the infection, and IFN-gamma is not a reliable correlate of protection. To determine whether IFN-gamma-independent mechanisms of immunity exist, we developed a murine ex vivo culture system that directly evaluates the ability of splenic or lung lymphocytes to control the growth of M. tuberculosis within infected macrophages, and that models in vivo immunity to tuberculosis. Surprisingly, CD4(+) T cells controlled >90% of intracellular M. tuberculosis growth in the complete absence of IFN-gamma stimulation of macrophages, via a NO-dependent mechanism. Furthermore, bacillus Calmette-Guerin-vaccinated IFN-gamma-deficient mice exhibited significant protection against M. tuberculosis challenge that was lost upon depletion of CD4(+) T cells. These findings demonstrate that CD4(+) T cells possess IFN-gamma-independent mechanisms that can limit the growth of an intracellular pathogen and are dominant in secondary responses to M. tuberculosis.  相似文献   

16.
Neutrophils and T cells play an important role in host protection against pulmonary infection caused by Streptococcus pneumoniae. However, the role of the integrins in recruitment of these cells to infected lungs is not well understood. In this study we used the twin approaches of mAb blockade and gene-deficient mice to investigate the relative impact of specific integrins on cellular recruitment and bacterial loads following pneumococcal infection. We find that both Mac-1 (CD11b/CD18) and α(4)β(1) (CD49d/CD29) integrins, but surprisingly not LFA-1 (CD11a/CD18), contribute to two aspects of the response. In terms of recruitment from the circulation into lungs, neutrophils depend on Mac-1 and α(4)β(1), whereas the T cells are entirely dependent on α(4)β(1). Second, immunohistochemistry results indicate that adhesion also plays a role within infected lung tissue itself. There is widespread expression of ICAM-1 within lung tissue. Use of ICAM-1(-/-) mice revealed that neutrophils make use of this Mac-1 ligand, not for lung entry or for migration within lung tissue, but for combating the pneumococcal infection. In contrast to ICAM-1, there is restricted and constitutive expression of the α(4)β(1) ligand, VCAM-1, on the bronchioles, allowing direct access of the leukocytes to the airways via this integrin at an early stage of pneumococcal infection. Therefore, integrins Mac-1 and α(4)β(1) have a pivotal role in prevention of pneumococcal outgrowth during disease both in regulating neutrophil and T cell recruitment into infected lungs and by influencing their behavior within the lung tissue itself.  相似文献   

17.
Granulomas, focal accumulations of immune cells, form in the lung during Mycobacterium tuberculosis infection. Chemokines, chemotactic cytokines, are logical candidates for inducing migration of T lymphocytes and monocytes to and within the lung. TNF influences chemokine expression in some models. TNF-deficient mice infected with M. tuberculosis are highly susceptible to disease, and granuloma formation is inhibited. Through in vitro assays, we demonstrate that neutralization of TNF in M. tuberculosis-infected macrophages led to a reduction in many inflammatory chemokines, such as C-C chemokine ligand 5, CXC ligand 9 (CXCL9), and CXCL10. In TNF-deficient mice, immune cells migrated to the lungs early after infection, but did not organize to form granulomas within the lung. Although chemokine expression, as measured in whole lung tissue, was not different, the expression of chemokines in the CD11b(+) subset of cells isolated ex vivo from the lungs of TNF-deficient mice had reduced expression of C-C chemokine ligand 5, CXCL9, and CXCL10 at early time points after TNF neutralization. Local expression of CXCR3-binding chemokines within the lungs, as determined by in situ hybridization, was also affected by TNF. Therefore, TNF affects the expression of chemokines by macrophages in vitro and CD11b(+) cells in vivo, which probably influences the local chemokine gradients and granuloma formation.  相似文献   

18.
19.
Host responses to Pneumocystis carinii infection mediate impairment of pulmonary function and contribute to the pathogenesis of pneumonia. IL-10 is known to inhibit inflammation and reduce the severity of pathology caused by a number of infectious organisms. In the present studies, IL-10-deficient (IL-10 knockout (KO)) mice were infected with P. carinii to determine whether the severity of pathogenesis and the efficiency of clearance of the organisms could be altered in the absence of IL-10. The clearance kinetics of P. carinii from IL-10 KO mice was significantly enhanced compared with that of wild-type (WT) mice. This corresponded to a more intense CD4(+) and CD8(+) T cell response as well as an earlier neutrophil response in the lungs of IL-10 KO mice. Furthermore, IL-12, IL-18, and IFN-gamma were found in the bronchoalveolar lavage fluids at earlier time points in IL-10 KO mice suggesting that alveolar macrophages were activated earlier than in WT mice. However, when CD4(+) cells were depleted from P. carinii-infected IL-10 KO mice, the ability to enhance clearance was lost. Furthermore, CD4-depleted IL-10 KO mice had significantly more lung injury than CD4-depleted WT mice even though the intensity of the inflammatory responses was similar. This was characterized by increased vascular leakage, decreased oxygenation, and decreased arterial pH. These data indicate that IL-10 down-regulates the immune response to P. carinii in WT mice; however, in the absence of CD4(+) T cells, IL-10 plays a critical role in controlling lung damage independent of modulating the inflammatory response.  相似文献   

20.
Both CD4(+) and CD8(+) T cells contribute to immunity to tuberculosis, and both can produce the essential effector cytokine IFN-γ. However, the precise role and relative contribution of each cell type to in vivo IFN-γ production are incompletely understood. To identify and quantitate the cells that produce IFN-γ at the site of Mycobacterium tuberculosis infection in mice, we used direct intracellular cytokine staining ex vivo without restimulation. We found that CD4(+) and CD8(+) cells were predominantly responsible for production of this cytokine in vivo, and we observed a remarkable linear correlation between the fraction of CD4(+) cells and the fraction of CD8(+) cells producing IFN-γ in the lungs. In the absence of CD4(+) cells, a reduced fraction of CD8(+) cells was actively producing IFN-γ in vivo, suggesting that CD4(+) effector cells are continually required for optimal IFN-γ production by CD8(+) effector cells. Accordingly, when infected mice were treated i.v. with an MHC-II-restricted M. tuberculosis epitope peptide to stimulate CD4(+) cells in vivo, we observed rapid activation of both CD4(+) and CD8(+) cells in the lungs. Indirect activation of CD8(+) cells was dependent on the presence of CD4(+) cells but independent of IFN-γ responsiveness of the CD8(+) cells. These data provide evidence that CD4(+) cell deficiency impairs IFN-γ production by CD8(+) effector cells and that ongoing cross-talk between distinct effector T cell types in the lungs may contribute to a protective immune response against M. tuberculosis. Conversely, defects in these interactions may contribute to susceptibility to tuberculosis and other infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号