首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole cells of Bacillus sp., a bacitracin-producing bacteria, were immobilized in polyacrylamide gel. The continuous production of bacitracin by an immobilized whole-cell-containing air-bubbled reactor was examined with 0.5% peptone solution. The bacitracin productivity (28 units/ml/hr) obtained with this system was higher than that with a batch system. The effluent bacitracin concentration increased with increasing aeration rate and reached a steady-state maximum above the aeration rate of 3.0 liter/min. A high bacitracin productivity was retained for at least eight days when the gel was washed with sterilized saline at a flow rate of 250 ml/hr for 2 hr once a day. The half-life of the immobilized whole-cell system was about 10 days. Bacitracin productivity by the immobilized whole-cell reactor was higher than that by a conventional continuous fermentation process at high dilution rates.  相似文献   

2.
An immobilized growing cell system was applied to the continuous L -isoleucine production by Serratia marcescens. In the new immobilized-cell systems using the carrageenan gel method. S. marcescens cells in the gel required nutrients and oxygen for growth, and the numbers of living cells per milliliter of gel increased to the levels of that of free cells in the liquid medium. This immobilized growing cell system exhibited high and stable activity for isoleucine production under steady-state conditions. Continuous isoleucine production was carried out by feeding the nutrient medium under aeration into a fluidized bed reactor containing the immobilized cells. In the continuous operation, an efficient production was maintained by automatically controlling the pH of the reaction mixture at 7.5. The productivity of isoleucine increased using multibed reactors. In a two-bed reactor system, the effluent L -isoleucine concentration reached 4.5 mg/ml at a retention time of 10 hr, and a steady state was maintained for longer than 30 days.  相似文献   

3.
Summary A two-stage fermentation process has been developed for continuous ethanol production by immobilized cells of Zymomonas mobilis. About 90–92 kg/m3 ethanol was produced after 4 h of residence time. Entrapped cells of Zymomonas mobilis have a capability to convert glucose to ethanol at 93% of the theoretical yield. The immobilized cell system has functioned for several weeks, and experience indicates that the carrageenan gel apparently facilitates easy diffusion of glucose and ethanol.The simplicity and the high productivity of the plug-flow reactor employing immobilized cells makes it economically attrative. An evaluation of process economics of an immobilized cell system indicates that at least 4 c/l of ethanol can be saved using the immobilized cell system rather than the conventional batch system. The high productivity achieved in the immobilized cell reactor results in the requirement for only small reactor vessels indicating low capital cost. Consequently, by switching from batch to immobilized processing, the fixed capital investment is substantially reduced, thus increasing the profitability of ethanol production by fermentation.  相似文献   

4.
The performance of a continuous vertical packed-bed reactor with yeast immobilized in carrageenan gel beads is reported. The study focuses on the mathematical modelling of the steady-state fermentor behavior by means of a tanks-in-series model which includes the intrinsic kinetic model and the external mass transfer and internal diffusion-reaction conditions in the beads.  相似文献   

5.
Summary The immobilized growing cell system using Serratia marcescens was applied to continuous L-arginine production. From the determination of oxygen uptake rate, it was shown that the cells entrapped in carrageenan gel were in an oxygen-limited state due to the diffusion barrier to oxygen transport created by the gel layer. This limited state in gel was relieved by supply of oxygen-enriched gas instead of air into the medium. The maximum population of immobilized cells increased to five times that of free cells with the supply of pure oxygen gas. The L-arginine-producing activity of the immobilized growing cells was proportional to the concentration of oxygen gas supplied and was 6 mg/h per millilitre in gel supplied with pure oxyges gas. The continuous L-arginine containing production was constantly maintained by controlling the medium penicillin G at pH 6.5 and more than 10 mg/ml of L-arginine were obtained at 10h of residence time for at least 12 days.  相似文献   

6.
Extensive experiments were carried out to improve the productivity ofl-malic acid from fumaric acid using Brevibacterium flavum immobilized with carrageenan. The most favourable preparation for the continuous production ofl-malic acid was obtained when 16 g of B. flavum cells was entrapped in 100 ml 3.4% carrageenan gel. However, the immobilized cells produced an unwanted by-product, succinic acid. Treatment of the immobilized cells with 0.6% bile extract suppressed the side reaction and gave the highest operational stability of fumarase activity. By the immobilization of intact cells, the optimal temperature of the enzyme reaction shifted to 10°C higher, the optimal pH became broader, and the operational stability of fumarase activity increased. The effect of temperature on the stability of fumarase activity in the immobilized cell column was investigated under conditions of continuous enzyme reaction. The decay of fumarase activity during continuous enzyme reaction was expressed by an exponential relationship. The productivity of the immobilized B. flavum using carrageenan was as high as 5.2 times that of the conventional immobilized B. ammoniagenes using polyacrylamide.  相似文献   

7.
Escherichia coli BZ 18 harboring the plasmid pTG 201 and immobilized in carrageenan gel beads in continuous culture without selection pressure, provides a better stability of the plasmid than free cells, with an approximately equal production of biomass.  相似文献   

8.
Summary Several strains of the protein-secreting, Gram negative bacterium Myxococcus xanthus were immobilized in carrageenan beads and the production of extracellular proteins was followed.The extracellular proteolytic activity was enhanced and concentrated in the beads. In contrast, the amount of total protein secreted by the cells was not modified by immobilization, but it was also retained and concentrated in the beads, the more, the harder the gel. The amount of slime produced by the cells did not seem to influence protein retention.Foreign proteins expressed from genes cloned in Myxococcus xanthus chromosome can be secreted into the medium by immobilized recombinant strains. A polygalacturonate lyase, expressed from the pelC gene from Erwinia chrysanthemi was only detectable outside of the beads. The pH 2.5 acid phosphatase expressed from the appA gene from Escherichia coli was secreted by immobilized cells at the same rate than did the free cells. It was predominantly found in the medium outside of the beads which represented a first purification and facilitated the continuous production of this protein by immobilized recombinant cells packed in a reactor.  相似文献   

9.
Some major restrictions of the production of propene oxide in an organic liquid-phase immobilized cell packed-bed reactor were quantified, and techniques were investigated to enhance the epoxide production rates. Propene-epoxidizing Mycobacterium cells were entrapped in calcium alginate gel and contacted with the substrates, propene and oxygen, which were dissolved in a continuous organic phase, n-hexadecane. The effects of product inhibition by the toxic epoxide—microbial consumption of propene oxide and immobilized cell deactivation—restricted severely the accumulation of the epoxide in the recirculation reactor system and could be predicted using a simple mathematical model. Epoxide inhibition was reduced by absorbing the product in the gas phase in old di-n-octyl phthalate. The resulting increase in propene oxide production agreed with model calculations. An alternating supply of propene and a co-substrate (ethene) prolonged the half-life of the immobilized cells. Using 50 g dry weight of cells, 1.5 g stereospecific propene oxide was produced in two days, of which 1.0 g was absorbed in the di-n-octyl phthalate phase.  相似文献   

10.
A rotating packed drum reactor has been proposed as an immobilized whole cell reactor and its performance for ethanol production has been studied with yeast cells immobilized in calcium alginate gel. In a continuous operation with synthetic d-glucose medium containing 125 g d-glucose l?1, ethanol productivity was 20 g l?1 h?1 at a space velocity of 0.38 l (l gel)?1 h?1. With intermittent aeration the viability of yeast cells after 270 h of operation remained above 65%. CO2 removal was easy, but d-glucose conversion was low at a high space velocity.  相似文献   

11.
Summary Mycelia of Streptomyces sp. T 59-235 and Streptomyces tendae Tü 901 (producing the antibiotics tylosin and nikkomycin, resp.) were immobilized in different carriers. With both organisms best antibiotic production was observed in calcium alginate gel.Influence of aeration, cell density and flow rate on antibiotic production was investigated in batch fermentation and in a continuous system (air-bubbled reactor).In batch fermentation, immobilization prolongued the production phase from 72 to 120 h (Streptomyces T 59-235) and from 72 to 96 h (S. tendae). The relative productivity of immobilized cells was 40 to 50% compared to that of free mycelia in both cases.In continuous tylosin fermentation highest production rate was observed in a medium nearly saturated with oxygen.Nikkomycin production by immobilized S. tendae could be maintained for longer than 350 h in a continuous system. The production rate depended on cell density and flow rate of the medium. The maximum specific productivity was 100% compared to that of free mycelium in batch culture.  相似文献   

12.
13.
Glucose isomerase in the form of heat-treated whole-cell enzyme prepared from Streptomyces phaeochromogenus follows the reversible single-substrate reaction kinetics in isomerization of glucose to fructose. Based on the Kinetic constants determined and the mathematical model of the reactor system developed, the preformance of a plug-flow-type continuous-enzyme reactor system was studied experimentally and also simulated with the aid of a computer for the ultimate objective of optimization of the glucose isomerase reactor system. The enzyme decay function for both the enzyme storage and during the use in the continuous reactor, was found to follow the first-order decay kinetics. When the enzyme decay function is taken into consideration, the ideal homogeneous enzyme reactor kinetics provided a satisfactory working model without further complicatin of the mathematical model, and the results of computer simulation were found to be in good agreement with the experimental results. Under a given set of constraints the performance of the continuous glucose isomerase reactor system can be predicted by using the computer simulation method described in this paper. The important parameters studied for the optimization of reactor operation were enzyme loading, mean space time of the reactor, substrate feed concentration, enzyme decay constants, and the fractional conversion, in addition to the kinetic constants. All these parameters have significant effect on the productivity. Some unique properties of the glucose isomerization reaction and its effects on the performance of the continuous glucose isomerase reactor system have been studied and discussed. The reaction kinetics of glucose isomerase and the effects of both the enzyme loading and the changes in reaction rate within a continuous reactor on the productivity are all found to be of particular importance to this enzyme reactor system.  相似文献   

14.
The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l(-1) PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml(-1) gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml(-1) gel. The observed volumetric reaction rate in the MLR was 0.79 mol s(-1) m(-3) (monolith). Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s(-1) m(-3) (catalyst)), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different reactor configuration including an optimal pH profile is required to increase the reactor performance. The monolithic stirrer reactor would be an interesting alternative to improve the performance of the monolith-PGA combination.  相似文献   

15.
Glutathione production coupled with an ATP regeneration system   总被引:7,自引:0,他引:7  
Summary Escherichia coli cells possessing glutathione synthetase and acetate kinase activities were immobilized with carrageenan gel. To enhance the operational stability, immobilized cells were treated with hardening agent, glutaraldehyde in the presence of hexamethylenediamine. The continuous production of glutathione was investigated using the column packed with immobilized Escherichia coli cell preparations. Glutathione was continuously produced by this column in the presence of acetyl phosphate and the half-life of this column was calculated to be 8 days at the flow rate of S.V.=0.1 h–1 at 37°C.  相似文献   

16.
Efficient ATP generation is required to produce glutathione and NADP. Hence, the generation of ATP was investigated using the glycolytic pathway of yeast. Saccharomyces cerevisiae cells immobilized using polyacrylamide gel generated ATP from adenosine, consuming glucose and converting it to ethanol and carbon dioxide. Under optimal conditions, the ATP-generating activity of immobilized yeast cells was 7.0 μmol h?1 ml?1 gel. A column packed with these immobilized yeast cells was used for continuous ATP generation. The half-life of the column was 19 days at a space velocity of (SV) 0.3 h?1 at 30°C. The properties of glutathione- and NADP-producing reactions coupled with the ATP-generating reaction were investigated. Escherichia coli cells with glutathione synthesizing activity and Brevibacterium ammoniagenes cells with NAD kinase activity were immobilized in a polyacrylamide gel lattice. Under optimal conditions, the immobilized E. coli cells and immobilized B. ammoniagenes cells produced glutathione and NADP at the rates of 2.1 and 0.65 μmol h?1 ml?1 gel, respectively, adding ATP to the reaction mixture. In order to produce glutathione and NADP economically and efficiently, the glutathione- and NADP-producing reactions were finally coupled with the ATP-generating reaction catalysed by immobilized S. cerevisiae cells. To compare the productivities of glutathione and NADP, and to compare the efficiency of ATP utilization for the production of these two compounds, the two reactor systems, co-immobilized cell system and mixed immobilized cell system, were designed. As a result, these two compounds were also found to be produced by these two kinds of reactor systems. Using the data obtained, the feasibility and properties of ATP generation by immobilized yeast cells are discussed in terms of the production of glutathione and NADP.  相似文献   

17.
Summary Data of cell concentration, viability and microscopic observation of cell distribution inside carrageenan immobilized yeast beads are reported. Results were obtained from a continuous packed-bed reactor performing alcoholic fermentation and the main observations made on cell activity are in agreement with the fermentation profiles inside the fermenter.  相似文献   

18.
Summary The continuous production of gibberellic acid with immobilized mycelia of Gibberella fujikuroi was maintained over a hundred days in a tubular fixed-bed reactor. Free mycelium at the beginning of the storage phase was harvested from G. fujikuroi shake-flask culture and was immobilized by ionotropic gelation in calcium alginate beads.The continuous recycle production system consisted of a fixed-bed reactor, a container in which the culture medium was heated, stirred and aerated, and valves for sample withdrawal or reactant addition during the first 1320 h (55 days). A two-phase continuous extractor was then added for the last 960 hours (40 days). Free and immobilized mycelium shake-flask cultures with the same strain used in the continuous culture system were also realized to compare growth, maintenance and production parameters. The results show about the same gibberellic acid productivity in both free and immobilized mycelium shakeflask cultures: 0.384 and 0.408 mgGA3·gBiomass-1 ·day-1, respectively, whereas in the continuous system the gibberellic acid production is about twice as large for a similar biomass: 0.768 mgGA3·gBiomass-1·day-1. Several factors affecting the overall productivity of the immobilized systems were found to be: the quality and the quantity of mycelia in the biocatalyst beads and the immobilization conditions.  相似文献   

19.
The kinetics and long-term stability of continuous production of monoclonal antibody IgG2b by hybridoma HD-24 cells immobilized in a fibrous-bed bioreactor (FBB) were studied for a period of ~8 months. The cells were immobilized in the fibrous bed by surface attachment of cells and entrapment of large cell clumps in the void space of the fibrous matrix. A high viable cell density of 1.01 × 108/ml was attained in the bioreactor, which was about 63 times higher than those in conventional T-flask and spinner flask cultures. The continuous FBB produced IgG at a concentration of ~0.5 g/l, with reactor productivity of ~7 mg/h·l, which was about 23 times higher than those from conventional T-flask and spinner flask cultures. The IgG concentration can be further increased to ~0.67 g/l by using higher feed (glucose and glutamine) concentrations and running the reactor at a recycle batch or fed-batch mode. The long-term performance of this bioreactor was also evaluated. For a period of 36 days monitored, the MAb produced in the continuous well-mixed bioreactor at 50 h retention time (0.02/h dilution rate) was maintained at a steady concentration level of ~0.3 g/l with less than 8% drift. At the end of the study, it was found that ~25% of the cells were strongly attached to the fiber surfaces and the other ~75% entrapped or weakly immobilized in the fibrous matrix. The strongly attached cells had a high viability of ~90%, compared to ~75% for cells weakly immobilized and only ~1.4% for freely suspended cells, suggesting that the fibrous matrix preferentially retained and protected the viable (productive) cells. The FBB thus was able to maintain its long-term productivity because nonviable and dead cells were continuously washed off from the fibrous matrix. The high MAb concentration and production rate and excellent stability for continuous long-term production obtained in this study compare favorably to other bioreactor studies reported in the literature. The reactor performance can be further improved by providing better pH and aeration controls at higher feed concentrations. The FBB is easy to operate and scale-up, and thus can be used economically for industrial production of MAb.  相似文献   

20.
This study compared the responses of three enzyme reactors containing urease immobilized on three types of solid support, controlled pore glass (CPG), silica gel and Poraver. The evaluation of each enzyme reactor column was done in a flow injection conductimetric system. When urea in the sample solution passed though the enzyme reactor, urease catalysed the hydrolysis of urea into charged products. A lab-built conductivity meter was used to measure the increase in conductivity of the solution. The responses of the enzyme reactor column with urease immobilized on CPG and silica gel were similar and were much higher than that of Poraver. Both CPG and silica gel reactor columns gave the same limit of detection, 0.5 mM, and the response was still linear up to 150mM. The analysis time was 4-5 min per sample. The enzyme reactor column with urease immobilized on CPG gave a slightly better sensitivity, 4% higher than the reactor with silica gel. The life time of the immobilized urease on CPG and silica gel were more than 310h operation time (used intermittently over 7 months). Good agreement was obtained when urea concentrations of human serum samples determined by the flow injection conductimetric biosensor system was compared to the conventional methods (Fearon and Berthelot reactions). These were statistically shown using the regression line and Wilcoxon signed rank tests. The results showed that the reactor with urease immobilized on silica gel had the same efficiency as the reactor with urease immobilized on CPG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号