首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We attempted to reproduce modular structures for direction selectivity characteristic of the primate middle temporal area (MT) based on our thermodynamic model for the activity-dependent self-organization of neural networks. We assumed that excitatory afferent input to MT neurons arises from V1 and/or V2 neurons which are selective to both orientation of a visual stimulus and direction of its motion, and that such input is modifiable and becomes selectively connected through the process of self-organization. By contrast, local circuit connections within MT are unmodifiable and remain nonselectively connected (isotropic). The present simulations reproduced characteristic patterns of organization in the cortex of MT in that: (1) preferred directions of the afferent input gradually shifted, except for singularity lines where direction abruptly changed by 180°; (2) model MT neurons located between the singularity lines responded to unidirectionally moving stimuli, closely reflecting preferred direction of the afferent input; (3) neurons responding to stimuli moving in two opposite directions were located along the singularity lines; and (4) neurons responding to stimuli moving in any direction were clustered at the ends of the singularity lines. When the strength of the lateral inhibition was decreased, direction selectivity of MT neurons was reduced. Therefore, the lateral inhibition, even if isotropic, strengthens the direction selectivity of MT neurons. Expression of singularities changed depending on a parameter that represents the relative dominance of the direction selectivity to the orientation selectivity of the afferent input. When the direction selectivity was predominant, singularity points were formed, while when the orientation selectivity prevailed, the MT was covered by two-dimensional singularity networks. Line singularities similar to those experimentally observed were reproduced when these two types of selectivity were in balance. Received: 15 October 1992/Accepted in revised form: 27 June 1993  相似文献   

2.
Thiele A  Dobkins KR  Albright TD 《Neuron》2000,26(3):715-724
Human psychophysical studies have demonstrated that, for stimuli near the threshold of visibility, detection of motion in one direction is unaffected by the superimposition of motion in the opposite direction. To investigate the neural basis for this perceptual phenomenon, we recorded from directionally selective neurons in macaque visual area MT (middle temporal visual area). Contrast thresholds obtained for single gratings moving in a neuron's preferred direction were compared with those obtained for motion presented simultaneously in the neuron's preferred and antipreferred directions. A simple model based on probability summation between neurons tuned to opposite directions could sufficiently account for contrast thresholds revealed psychophysically, suggesting that area MT is likely to provide the neural basis for contrast detection of stimuli modulated in time.  相似文献   

3.
The primate brain intelligently processes visual information from the world as the eyes move constantly. The brain must take into account visual motion induced by eye movements, so that visual information about the outside world can be recovered. Certain neurons in the dorsal part of monkey medial superior temporal area (MSTd) play an important role in integrating information about eye movements and visual motion. When a monkey tracks a moving target with its eyes, these neurons respond to visual motion as well as to smooth pursuit eye movements. Furthermore, the responses of some MSTd neurons to the motion of objects in the world are very similar during pursuit and during fixation, even though the visual information on the retina is altered by the pursuit eye movement. We call these neurons compensatory pursuit neurons. In this study we develop a computational model of MSTd compensatory pursuit neurons based on physiological data from single unit studies. Our model MSTd neurons can simulate the velocity tuning of monkey MSTd neurons. The model MSTd neurons also show the pursuit compensation property. We find that pursuit compensation can be achieved by divisive interaction between signals coding eye movements and signals coding visual motion. The model generates two implications that can be tested in future experiments: (1) compensatory pursuit neurons in MSTd should have the same direction preference for pursuit and retinal visual motion; (2) there should be non-compensatory pursuit neurons that show opposite preferred directions of pursuit and retinal visual motion.  相似文献   

4.
Human observers see a single mixed color (yellow) when different colors (red and green) rapidly alternate. Accumulating evidence suggests that the critical temporal frequency beyond which chromatic fusion occurs does not simply reflect the temporal limit of peripheral encoding. However, it remains poorly understood how the central processing controls the fusion frequency. Here we show that the fusion frequency can be elevated by extra-retinal signals during smooth pursuit. This eye movement can keep the image of a moving target in the fovea, but it also introduces a backward retinal sweep of the stationary background pattern. We found that the fusion frequency was higher when retinal color changes were generated by pursuit-induced background motions than when the same retinal color changes were generated by object motions during eye fixation. This temporal improvement cannot be ascribed to a general increase in contrast gain of specific neural mechanisms during pursuit, since the improvement was not observed with a pattern flickering without changing position on the retina or with a pattern moving in the direction opposite to the background motion during pursuit. Our findings indicate that chromatic fusion is controlled by a cortical mechanism that suppresses motion blur. A plausible mechanism is that eye-movement signals change spatiotemporal trajectories along which color signals are integrated so as to reduce chromatic integration at the same locations (i.e., along stationary trajectories) on the retina that normally causes retinal blur during fixation.  相似文献   

5.
Cortical neurons are frequently tuned to several stimulus dimensions, and many cortical areas contain intercalated maps of multiple variables. Relatively little is known about how information is “read out” of these multidimensional maps. For example, how does an organism extract information relevant to the task at hand from neurons that are also tuned to other, irrelevant stimulus dimensions? We addressed this question by employing microstimulation techniques to examine the contribution of disparity-tuned neurons in the middle temporal (MT) visual area to performance on a direction discrimination task. Most MT neurons are tuned to both binocular disparity and the direction of stimulus motion, and MT contains topographic maps of both parameters. We assessed the effect of microstimulation on direction judgments after first characterizing the disparity tuning of each stimulation site. Although the disparity of the stimulus was irrelevant to the required task, we found that microstimulation effects were strongly modulated by the disparity tuning of the stimulated neurons. For two of three monkeys, microstimulation of nondisparity-selective sites produced large biases in direction judgments, whereas stimulation of disparity-selective sites had little or no effect. The binocular disparity was optimized for each stimulation site, and our result could not be explained by variations in direction tuning, response strength, or any other tuning property that we examined. When microstimulation of a disparity-tuned site did affect direction judgments, the effects tended to be stronger at the preferred disparity of a stimulation site than at the nonpreferred disparity, indicating that monkeys can selectively monitor direction columns that are best tuned to an appropriate conjunction of parameters. We conclude that the contribution of neurons to behavior can depend strongly upon tuning to stimulus dimensions that appear to be irrelevant to the current task, and we suggest that these findings are best explained in terms of the strategy used by animals to perform the task.  相似文献   

6.
Cortical neurons are frequently tuned to several stimulus dimensions, and many cortical areas contain intercalated maps of multiple variables. Relatively little is known about how information is “read out” of these multidimensional maps. For example, how does an organism extract information relevant to the task at hand from neurons that are also tuned to other, irrelevant stimulus dimensions? We addressed this question by employing microstimulation techniques to examine the contribution of disparity-tuned neurons in the middle temporal (MT) visual area to performance on a direction discrimination task. Most MT neurons are tuned to both binocular disparity and the direction of stimulus motion, and MT contains topographic maps of both parameters. We assessed the effect of microstimulation on direction judgments after first characterizing the disparity tuning of each stimulation site. Although the disparity of the stimulus was irrelevant to the required task, we found that microstimulation effects were strongly modulated by the disparity tuning of the stimulated neurons. For two of three monkeys, microstimulation of nondisparity-selective sites produced large biases in direction judgments, whereas stimulation of disparity-selective sites had little or no effect. The binocular disparity was optimized for each stimulation site, and our result could not be explained by variations in direction tuning, response strength, or any other tuning property that we examined. When microstimulation of a disparity-tuned site did affect direction judgments, the effects tended to be stronger at the preferred disparity of a stimulation site than at the nonpreferred disparity, indicating that monkeys can selectively monitor direction columns that are best tuned to an appropriate conjunction of parameters. We conclude that the contribution of neurons to behavior can depend strongly upon tuning to stimulus dimensions that appear to be irrelevant to the current task, and we suggest that these findings are best explained in terms of the strategy used by animals to perform the task.  相似文献   

7.
  1. Extracellular recordings from wide-field nonhabituating non-directional (ND) motion detecting neurons in the second optic chiasma of the locust Locusta migratoria are presented. The responses to various types of stepwise moving spot and bar stimuli were monitored (Fig. 1)
  2. Stepwise motion in all directions elicited bursts of spikes. The response is inhibited at stimulus velocities above 5°/s. At velocities above 10°/s the ND neurons are slightly more sensitive to motion in the horizontal direction than to motion in the vertical direction (Fig. 2). The ND cells have a preference for small moving stimuli (Fig. 3).
  3. The motion response has two peaks. The latency of the second peak depends on stimulus size and stimulus velocity. Increasing the height from 0.1 to 23.5° of a 5°/s moving bar results in a lowering of this latency time from 176 to 130 ms (Fig. 4). When the velocity from a single 0.1° spot is increased from 1 to 16°/s, the latency decreases from 282 to 180 ms (Figs. 5–6).
  4. A change-of-direction sensitivity is displayed. Stepwise motion in one particular direction produces a continuous burst of spike discharges. Reversal or change in direction leads to an inhibition of the response (Fig. 7).
  5. It shows that non-directional motion perception of the wide-field ND cells can simply be explained by combining self-and lateral inhibition.
  相似文献   

8.
Visual processing of color starts at the cones in the retina and continues through ventral stream visual areas, called the parvocellular pathway. Motion processing also starts in the retina but continues through dorsal stream visual areas, called the magnocellular system. Color and motion processing are functionally and anatomically discrete. Previously, motion processing areas MT and MST have been shown to have no color selectivity to a moving stimulus; the neurons were colorblind whenever color was presented along with motion. This occurs when the stimuli are luminance-defined versus the background and is considered achromatic motion processing. Is motion processing independent of color processing? We find that motion processing is intrinsically modulated by color. Color modulated smooth pursuit eye movements produced upon saccading to an aperture containing a surface of coherently moving dots upon a black background. Furthermore, when two surfaces that differed in color were present, one surface was automatically selected based upon a color hierarchy. The strength of that selection depended upon the distance between the two colors in color space. A quantifiable color hierarchy for automatic target selection has wide-ranging implications from sports to advertising to human-computer interfaces.  相似文献   

9.
We report a model that reproduces many of the behavioral properties of smooth pursuit eye movements. The model is a negative-feedback system that uses three parallel visual motion pathways to drive pursuit. The three visual pathways process image motion, defined as target motion with respect to the moving eye, and provide signals related to image velocity, image acceleration, and a transient that occurs at the onset of target motion. The three visual motion signals are summed and integrated to produce the eye velocity output of the model. The model reproduces the average eye velocity evoked by steps of target velocity in monkeys and humans and accounts for the variation among individual responses and subjects. When its motor pathways are expanded to include positive feedback of eye velocity and a switch, the model reproduces the exponential decay in eye velocity observed when a moving target stops. Manipulation of this expanded model can mimic the effects of stimulation and lesions in the arcuate pursuit area, the middle temporal visual area (MT), and the medial superior temporal visual area (MST).  相似文献   

10.
Aging reduces center-surround antagonism in visual motion processing   总被引:3,自引:0,他引:3  
Betts LR  Taylor CP  Sekuler AB  Bennett PJ 《Neuron》2005,45(3):361-366
Discriminating the direction of motion of a low-contrast pattern becomes easier with increasing stimulus area. However, increasing the size of a high-contrast pattern makes it more difficult for observers to discriminate motion. This surprising result, termed spatial suppression, is thought to be mediated by a form of center-surround suppression found throughout the visual pathway. Here, we examine the counterintuitive hypothesis that aging alters such center-surround interactions in ways that improve performance in some tasks. We found that older observers required briefer stimulus durations than did younger observers to extract information about stimulus direction in conditions using large, high-contrast patterns. We suggest that this age-related improvement in motion discrimination may be linked to reduced GABAergic functioning in the senescent brain, which reduces center-surround suppression in motion-selective neurons.  相似文献   

11.
Pack CC  Livingstone MS  Duffy KR  Born RT 《Neuron》2003,39(4):671-680
Our perception of fine visual detail relies on small receptive fields at early stages of visual processing. However, small receptive fields tend to confound the orientation and velocity of moving edges, leading to ambiguous or inaccurate motion measurements (the aperture problem). Thus, it is often assumed that neurons in primary visual cortex (V1) carry only ambiguous motion information. Here we show that a subpopulation of V1 neurons is capable of signaling motion direction in a manner that is independent of contour orientation. Specifically, end-stopped V1 neurons obtain accurate motion measurements by responding only to the endpoints of long contours, a strategy which renders them largely immune to the aperture problem. Furthermore, the time course of end-stopping is similar to the time course of motion integration by MT neurons. These results suggest that cortical neurons might represent object motion by responding selectively to two-dimensional discontinuities in the visual scene.  相似文献   

12.
Directional selectivity, in which neurons respond strongly to an object moving in a given direction but weakly or not at all to the same object moving in the opposite direction, is a crucial computation that is thought to provide a neural correlate of motion perception. However, directional selectivity has been traditionally quantified by using the full spike train, which does not take into account particular action potential patterns. We investigated how different action potential patterns, namely bursts (i.e. packets of action potentials followed by quiescence) and isolated spikes, contribute to movement direction coding in a mathematical model of midbrain electrosensory neurons. We found that bursts and isolated spikes could be selectively elicited when the same object moved in opposite directions. In particular, it was possible to find parameter values for which our model neuron did not display directional selectivity when the full spike train was considered but displayed strong directional selectivity when bursts or isolated spikes were instead considered. Further analysis of our model revealed that an intrinsic burst mechanism based on subthreshold T-type calcium channels was not required to observe parameter regimes for which bursts and isolated spikes code for opposite movement directions. However, this burst mechanism enhanced the range of parameter values for which such regimes were observed. Experimental recordings from midbrain neurons confirmed our modeling prediction that bursts and isolated spikes can indeed code for opposite movement directions. Finally, we quantified the performance of a plausible neural circuit and found that it could respond more or less selectively to isolated spikes for a wide range of parameter values when compared with an interspike interval threshold. Our results thus show for the first time that different action potential patterns can differentially encode movement and that traditional measures of directional selectivity need to be revised in such cases.  相似文献   

13.
The neural representation of motion aftereffects induced by various visual flows (translational, rotational, motion-in-depth, and translational transparent flows) was studied under the hypothesis that the imbalances in discharge activities would occur in favor in the direction opposite to the adapting stimulation in the monkey MST cells (cells in the medial superior temporal area) which can discriminate the mode (i.e., translational, rotational, or motion-in-depth) of the given flow. In single-unit recording experiments conducted on anaesthetized monkeys, we found that the rate of spontaneous discharge and the sensitivity to a test stimulus moving in the preferred direction decreased after receiving an adapting stimulation moving in the preferred direction, whereas they increased after receiving an adapting stimulation moving in the null direction. To consistently explain the bidirectional perception of a transparent visual flow and its unidirectional motion aftereffect by the same hypothesis, we need to assume the existence of two subtypes of MST D cells which show directionally selective responses to a translational flow: component cells and integration cells. Our physiological investigation revealed that the MST D cells could be divided into two types: one responded to a transparent flow by two peaks at the instances when the direction of one of the component flow matched the preferred direction of the cell, and the other responded by a single peak at the instance when the direction of the integrated motion matched the preferred direction. In psychophysical experiments on human subjects, we found evidence for the existence of component and integration representations in the human brain. To explain the different motion perceptions, i.e., two transparent flows during presentation of the flows and a single flow in the opposite direction to the integrated flows after stopping the flow stimuli, we suggest that the pattern-discrimination system can select the motion representation that is consistent with the perception of the pattern from two motion representations. We discuss the computational aspects related to the integration of component motion fields.  相似文献   

14.
Human exhibits an anisotropy in direction perception: discrimination is superior when motion is around horizontal or vertical rather than diagonal axes. In contrast to the consistent directional anisotropy in perception, we found only small idiosyncratic anisotropies in smooth pursuit eye movements, a motor action requiring accurate discrimination of visual motion direction. Both pursuit and perceptual direction discrimination rely on signals from the middle temporal visual area (MT), yet analysis of multiple measures of MT neuronal responses in the macaque failed to provide evidence of a directional anisotropy. We conclude that MT represents different motion directions uniformly, and subsequent processing creates a directional anisotropy in pathways unique to perception. Our data support the hypothesis that, at least for visual motion, perception and action are guided by inputs from separate sensory streams. The directional anisotropy of perception appears to originate after the two streams have segregated and downstream from area MT.  相似文献   

15.
Responses of 114 pulvinar neurons to moving visual stimuli were studied. Most (79) neurons possessed spontaneous activity (10–25 spikes/sec). Of 59 neurons tested, 31 responded to stimulation of both retinas and 28 to stimulation only of the contralateral retina. Of 114 neurons, 41 responded only to movement of black objects, while the rest responded to movement of both black and light objects. According to the character of their responses to movement the neurons were divided into two main groups. The first group consisted of neurons sensitive to the direction of motion and responding with a spike discharge to movement in one direction and by inhibition to movement in the opposite direction. The second group included neurons insensitive to the direction of motion and responding by an equal number of discharges to movements in two opposite directions. Besides these two main groups, other neurons responding to movement in two opposite directions by discharges with different temporal distribution and also neurons which changed the character of their response from nondirectional to directional depending on the size of the moving stimulus, were found.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 348–354, July–August, 1978.  相似文献   

16.
The ability of human subjects to discriminate direction of tactile stimulus motion on the dorsum of the hand was determined (1) in the absence and (2) in the presence of a moving stimulus delivered to a second skin site on the ipsilateral or contralateral forelimb. When the two skin sites were simultaneously contacted by stimuli moving in the same direction, directional sensitivity was typically below that predicted for a hypothetical subject who could independently process the information provided at each of the two skin sites. Even when the stimulus delivered to a second site was deliberately ignored, it could still alter a subject's perception of stimulus direction on the dorsal hand. Moreover, its influence was greatest whenever it moved in a direction opposite to that of the attended stimulus. Whenever the two moving stimuli were delivered nonsimultaneously to two skin sites, directional sensitivity rarely matched the levels predicted for a hypothetical subject who could independently process the information provided at each site. This, in part, resulted from the subjects' utilization of "long-range" cues provided by the temporal order of stimulation. Subjects frequently failed to distinguish these cues from the sensation of stimulus direction provided at each skin site.  相似文献   

17.
Biber U  Ilg UJ 《PloS one》2011,6(1):e16265
Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception.The motion aftereffect (MAE) occurs after viewing of a moving stimulus as an apparent movement to the opposite direction. We designed a saccade paradigm suitable for revealing pre-saccadic remapping of the MAE. Indeed, a transfer of motion adaptation from pre-saccadic to post-saccadic position could be observed when subjects prepared saccades. In the remapping condition, the strength of the MAE was comparable to the effect measured in a control condition (33±7% vs. 27±4%). Contrary, after a saccade or without saccade planning, the MAE was weak or absent when adaptation and test stimulus were located at different retinal locations, i.e. the effect was clearly retinotopic. Regarding visual cognition, our study reveals for the first time predictive remapping of the MAE but no spatiotopic transfer across saccades. Since the cortical sites involved in motion adaptation in primates are most likely the primary visual cortex and the middle temporal area (MT/V5) corresponding to human MT, our results suggest that pre-saccadic remapping extends to these areas, which have been associated with strict retinotopy and therefore with classical RF organization. The pre-saccadic transfer of visual features demonstrated here may be a crucial determinant for a stable percept despite saccades.  相似文献   

18.
蜻蜒腹神经束上存在着自运动检测神经元和目标运动检测神经元.我们采用了两种视觉刺激条件来测试自运动检测神经元的光谱反应.当采用控制强度和波长的闪光进行测试时、它们的光谱反应曲线与绿色光感受器的光谱灵敏度曲线极其相似,峰值位于500nm处.然而采用运动的条纹进行测试时,它们的峰值却位于560nm处.当用一种颜色的运动图案作为目标放置在另一种颜色背景的前方测试时,发现存在某个目标的照明强度值能使反应下降到自发放电的水平,这表明自运动检测器无法检测这二种颜色的差别,即它们是色盲的、它主要接受来自绿色光感受器的信号.目标运动检测神经元的光谱反应特性与自运动检测神经元的不同,目标运动检测神经元在以380nm至580nm的范围中有着平坦的光谱反应曲线,有时在紫外频段出现峰有(?)前景与背景颜色不同且固定背景光的颜色与强度而改变前景的光强时,神经元的反应不会下降到自发放电水平,当背景为绿色而目标为另一个颜色.特别是兰色时,神经元反应强烈,但当背景为兰色而目标为绿色时,它们的反应相对较弱.这些结果表明目标运动检测神经元是对颜色敏感的.  相似文献   

19.
Reaching movements towards an object are continuously guided by visual information about the target and the arm. Such guidance increases precision and allows one to adjust the movement if the target unexpectedly moves. On-going arm movements are also influenced by motion in the surrounding. Fast responses to motion in the surrounding could help cope with moving obstacles and with the consequences of changes in one’s eye orientation and vantage point. To further evaluate how motion in the surrounding influences interceptive movements we asked subjects to tap a moving target when it reached a second, static target. We varied the direction and location of motion in the surrounding, as well as details of the stimuli that are known to influence eye movements. Subjects were most sensitive to motion in the background when such motion was near the targets. Whether or not the eyes were moving, and the direction of the background motion in relation to the direction in which the eyes were moving, had very little influence on the response to the background motion. We conclude that the responses to background motion are driven by motion near the target rather than by a global analysis of the optic flow and its relation with other information about self-motion.  相似文献   

20.
Until recently, it was widely believed that object position and object motion were represented independently in the visual cortex. However, several studies have shown that adaptation to motion produces substantial shifts in the perceived position of subsequently viewed stationary objects. Two stages of motion adaptation have been proposed: an initial stage at the level of V1 and a secondary stage thought to be located in V5/MT. Indeed, selective adaptation can be demonstrated at each of these levels of motion analysis. What remains unknown is which of these cortical sites are involved in modulating the positional representation of subsequently viewed objects. To answer this question directly, we disrupted cortical activity by using transcranial magnetic stimulation (TMS) immediately after motion adaptation. When TMS was delivered to V5/MT after motion adaptation, the perceived offset of the test stimulus was greatly reduced. In marked contrast, TMS of V1 had no effect on the changes that normally occur in perceived position after motion adaptation. This result demonstrates that the anatomical locus at which motion and positional information interact is area V5/MT rather than V1/V2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号