首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The semilunar eclosion of the intertidal chironomid Clunio is controlled by a semilunar timing of pupation in combination with a daily timing of emergence. This results in reproductive activities of a laboratory population every 15 days at a distinct time of day (in nature mostly in correlation with the afternoon low water time on days with spring tides). The entrainment of the timing processes has been tested under various periods of the daily light-dark cycle in order to check the circadian organization of the timing mechanisms as suggested for the perception of the semilunar zeitgeber situation (a distinct phase relationship between the 24 h light-dark cycle and the 12.4 h tidal cycle recurring after every 15th light-dark cycle, named semimonthly zeitgeber cycle) as well as for the daily zeitgeber (the 24 h light-dark cycle). With respect to the semilunar timing, a strong entrainment was only possible in semimonthly zeitgeber cycles with light-dark cycle periods close to the 24-h day (light-dark cycles of 10:10 to 14:14). This limited circadian range of entrainment of an endogenous circasemilunar long-term rhythm (syn. oscillator) conforms with the hypothesis for a circadian clock component as an intrinsic part of the semilunar zeitgeber perception.The range of entrainment for the daily timing was obviously wider which may be discussed either in relation to a multioscillatory circadian organization of the midges or in relation to different coupling characteristics of one circadian oscillator during semilunar and daily timing.  相似文献   

2.
The timing of semilunar as well as lunar reproductive rhythms has been analyzed in different geographic populations of the intertidal chironomid Clunio. In stocks of three populations differing in period and phase relationship with the lunar month, these long-term rhythms were synchronized in the laboratory by using artificial moonlight cycles of 30 days in otherwise 24-hr light-dark (LD) cycles (0.4 lux during 4 successive nights every 30 days in LD 12:12). In LD cycles of various periods, a strong synchronization was only possible in LD 12:12 and LD 11:11, whereas in LD 10:10 and LD 15:15 the synchronization by the 30-"day" moonlight cycle was weak or even absent. The study demonstrates a limited range of circadian periods for entrainment of the long-term rhythms. It is concluded that an LD cycle with a period near 24 hr is an essential zeitgeber condition for semilunar and lunar timing in this marine insect. Further, it is suggested that the underlying physiological timing mechanism of Clunio consists of a circadian function for the perception of the monthly moonlight zeitgeber cycles that entrain the endogenous, temperature-compensated oscillator of the circasemilunar (or circalunar) period. The long-term oscillator triggers the metamorphosis of the insect, and thereby determines the time of its eclosion and reproduction on the shorelines, in correlation with days of spring tides recurring about every 14-15 days.  相似文献   

3.
Summary The number of the land crabs Sesarma which released zoeae in a river was counted and recorded for 2 years. The number of crabs releasing zoeae reached a maximum at around every syzygy and decreased to a minimum at around every half moon, showing a semilunar rhythm (Fig. 2). This semilunar rhythm, when examined temporally, showed a peculiar pattern accurately synchronized with the lunar cycle. On the day of and during 4–5 days prior to the syzygy, the peak of zoea-release activity came just after sunset. A few days later, the peak gradually shifted to later in the evening and became flattened until temporal concentration was no longer observed. About 2 days after the half moon, the peak appeared again just after sunset (Figs. 3, 4 and 5). It is not likely that the tide itself affects the semilunar rhythm of Sesarma, but it is supposed that the lunadian factor is involved in it. The adaptive significance of this semilunar rhythm may be interpreted to mean that zoeae released in the river just after the time of spring high tides will successfully arrive at the sea and that the lunadian modification of the peak in the temporal structure will also ensure that the zoeae will be released at the time of high tides and will have a better chance of arriving at the sea than they would otherwise do.Contributions from Shimoda Marine Research Center, The University of Tsukuba, No 331  相似文献   

4.
We compared the timing of larval release by Uca thayeri exposed to different tidal regimes. Crabs on Florida's East Coast experience semidiurnal tides, whereas crabs on the Florida's West Coast experience mixed tides.

In both populations, hatching occurred shortly after high tide. On the East Coast, most crabs released their larvae between dusk and midnight, a few days before the maximum amplitude spring tides. On the West Coast, most crabs released their larvae during the afternoon tropic tides of greater amplitude. West Coast crabs may release during the day because ebbing tides at night are too weak for effective transport. Thus, at each location, hatching occurs when phase relationships between the ebbing tides, the light–dark cycle, and tidal amplitude are most favorable. Further study is required to determine whether females on each Coast show fixed responses to each tidal regime, or whether they can alter their hatching rhythms upon exposure to different tides.  相似文献   


5.
Entrainment experiments have been carried out with geographically widely separated populations of the sand beach isopod Eurydice pulchra Leach subjected to periods of simulated tidal agitation imposed concurrently with a 24-h light: dark (L: D) cycle. Circatidal swimming rhythms of greatest amplitude were induced when agitation was applied with the subjective timing, within the L: D cycle, of local spring high tides. This occurred in a normal L: D regime and also when the L: D regime was phase shifted through 90°. Animals previously maintained in constant darkness (D: D) and subsequently exposed to simulated tidal disturbance at various times in constant darkness were unable to modulate the amplitude of circatidal swimming activity. Isopods previously maintained in a normal L: D cycle and subsequently subjected to artificial tidal agitation in constant darkness were, however, able to modulate circatidal activity. This indicates that E. pulchra is capable of detecting tidal agitation and daily light cues and using them in conjunction with its circadian “clock” to modulate its endogenous circatidal rhythmicity. The free-running semilunar rhythm of swimming activity entrained only when the timing of agitation within the day/night cycle mimicked the pattern of local spring high tides. Agitation with the timing of neap high tides entrained no free-running circa-semilunar activity pattern.  相似文献   

6.
The mole crab Emerita talpoida migrates with the tide in the swash zone of sand beaches. A circatidal rhythm in vertical swimming underlies movement, in which mature male crabs show peak swimming activity 1-2 h after the time of high tides at the collection site. In addition, there is a secondary rhythm in activity amplitude, in which crabs are maximally active following low amplitude high tides and minimally active following high amplitude high tides. The present study determined the phase response relationship for entrainment of the circatidal rhythm with mechanical agitation and whether the cycle in activity related to tidal amplitude could be entrained by a cycle in the duration of mechanical agitation at the times of consecutive high tides. After entrainment with mechanical agitation on an orbital shaker, activity of individual crabs was monitored in constant conditions with a video system and quantified as the number of ascents from the sand each 0.5 h. Mechanical agitation at the times of high tide, mid-ebb and low tide reset the timing of the circatidal rhythm according to the timing relationship to high tide. However, mechanical agitation during flood tide had no entrainment effect. In addition, a cycle in duration of mechanical agitation entrained the rhythm in activity amplitude associated with tidal amplitude. Both rhythms and entrainment effectiveness over the tidal cycle may function to reduce the likelihood of stranding above the swash zone.  相似文献   

7.
Juvenile American horseshoe crabs, Limulus polyphemus, express both daily and tidal rhythms. To determine if, and how, tidal cues influence the expression of these rhythms, we exposed 25 animals to artificial tides, and 17 to artificial tides with inundation, both with a 12:12 LD cycle. In the first experiment, 24% expressed daily rhythms of activity, 24% tidal rhythms, 12% a combination of the two, and the rest were arrhythmic. Under subsequent atidal conditions some expressed daily rhythms, but more were circatidal. In the second experiment, 6% expressed daily rhythms, 71% tidal, 12% a combination, and 12% were arrhythmic. Those expressing tidal rhythms were more active during flood/high tide, while daily animals tended to be nocturnal. Under subsequent constant conditions, the majority exhibited circatidal activity, with some expressing one activity bout per day. We conclude that juvenile horseshoe crabs entrain to artificial tides, with inundation cycles providing stronger cues than water depth changes.  相似文献   

8.
In the spider mite Tetranychus urticae photoperiodic time measurement proceeds accurately in orange-red light of 580 nm and above in light/dark cycles with a period length of 20 h but not in 'natural' cycles with a period length of 24 h. To explain these results it is hypothesized that the photoperiodic clock in the spider mite is sensitive to orange-red light, but the Nanda-Hamner rhythm (a circadian rhythm with a free-running period tau of 20 h involved in the photoperiodic response) is not and consequently free runs in orange-red light. To test this hypothesis a zeitgeber was sought that could entrain the Nanda-Hamner rhythm to a 24-h cycle without inducing diapause itself, in order to manipulate the rhythm independently from the orange-red sensitive photoperiodic clock. A suitable zeitgeber was found to be a thermoperiod with a 12-h warm phase and a 12-h cold phase. Combining the thermoperiod with the long-night orange-red light/dark regime, both with a cycle length of 24 h, resulted in a high diapause incidence, although neither regime was capable of inducing diapause on its own. The conclusion is that the Nanda-Hamner rhythm is necessary for the realization of the photoperiodic response, but is not part of the photoperiodic clock, because photoperiodic time measurement takes place in orange-red light whereas the rhythm is not able to 'see' the orange-red light. It is speculated that the Nanda-Hamner rhythm is involved in the timely synthesis of a substrate for the photoperiodic clock in the spider mite.  相似文献   

9.
In estimating, by use of cosinor-test, the 12- and 24-h component parameters of body temperature circadian rhythm in monkeys under ultradian schedules of lighting and feeding (LD 6:6; DL 6:6) we have shown that an intensive 12-h component is registered in both cases. The presence of a 24-h component of circadian rhythm depends on the zeitgeber phase. This component is present in LD 6:6 (lighting hours 07:00-13:00 and 19:00-01:00) and is absent in DL 6:6 (01:00-07:00 and 13:00-19:00). We hold that the most satisfactory explanation of the phenomena observed is that 12-h component is the result of a masking effect induced by the 12-h schedule (exogenous component) whereas the 24-h component reflects the intrinsic pacemaker work (endogenous component). It should be noted that in our case the masking effect in body temperature rhythm is circadian phase-dependent.  相似文献   

10.
Organisms living along the shore are exposed to complex sets of environmental oscillations. In addition to solar (24.0 h) and lunar (24.8 h) cycles, local tides may reoccur on a 12.4 h schedule. Beyond daily routines, biweekly, monthly and annual rhythms may each have a significant impact on an animal's activity. For some time, it has been established firmly that intertidal crabs possess several internal biological clocks with distinctly different periods and properties. However, the versatility of these clocks has not been obvious. Crabs living in the littoral zone must adjust their internal chrono-meters to be synchronous with the specific temporal structure of the immediate habitat. Fine adjustments in their clocks will depend upon on a particular tide province and the location of their niche in the intertidal zone. Over a wide geographic range, the location of an intertidal habitat for one species may be in as many as four tidal provinces. Based on wave form and harmonic components, tide provinces are characterized as either a) semidiurnal, b) mixed, mainly semidiurnal, c) mixed mainly diurnal, or d) diurnal. Likewise, the primary frequency associated with an intertidal niche in each tide province may be augmented by diel (24 h) and semilunar (14 day) periods. In addition, supralittoral habitats may be influenced by monthly (28 day) and seasonal rhythms. Since some species live in several tidal provinces and different positions in the littoral zone, locomotor and larval release rhythms of intertidal crabs must naturally be adjusted to the timetable of the local habitat. Flexibility in ambulatory and egg hatching rhythms of crabs are discussed from this environmental perspective. The nature and location of the underlying circadian and tidal oscillators tracking these environmental rhythms are reviewed.  相似文献   

11.
Fruit fly Drosophila melanogaster females display rhythmic egg-laying under 12:12?h light/dark (LD) cycles which persists with near 24?h periodicity under constant darkness (DD). We have shown previously that persistence of this rhythm does not require the neurons expressing pigment dispersing factor (PDF), thought to be the canonical circadian pacemakers, and proposed that it could be controlled by peripheral clocks or regulated/triggered by the act of mating. We assayed egg-laying behaviour of wild-type Canton S (CS) females under LD, DD and constant light (LL) conditions in three different physiological states; as virgins, as females allowed to mate with males for 1?day and as females allowed to mate for the entire duration of the assay. Here, we report the presence of a circadian rhythm in egg-laying in virgin D. melanogaster females. We also found that egg-laying behaviour of 70 and 90% females from all the three male presence/absence protocols follows circadian rhythmicity under DD and LL, with periods ranging between 18 and 30?h. The egg-laying rhythm of all virgin females synchronized to LD cycles with a peak occurring soon after lights-off. The rhythm in virgins was remarkably robust with maximum number of eggs deposited immediately after lights-off in contrast to mated females which show higher egg-laying during the day. These results suggest that the egg-laying rhythm of D. melanogaster is endogenously driven and is neither regulated nor triggered by the act of mating; instead, the presence of males results in reduction in entrainment to LD cycles.  相似文献   

12.
Mangrove forests are influenced by tidal flooding and ebbing for a period of approximately 12.4 hours (tidal cycle). Mangrove crickets (Apteronemobius asahinai) forage on mangrove forest floors only during low tide. Under constant darkness, most crickets showed a clear bimodal daily pattern in their locomotor activity for at least 24 days; the active phases of approximately 10 hours alternated with inactive phases of approximately 2 hours, which coincided with the time of high tide in the field. The free-running period was 12.56+/-0.13 hours (mean+/-s.d. n=11). This endogenous rhythm was not entrained by the subsequent 24 hours light-dark cycle, although it was suppressed in the photophase; the active phase in the scotophase continued from the active phase in the previous constant darkness, with no phase shift. The endogenous rhythm was assumed to be a circatidal rhythm. On the other hand, the activity under constant darkness subsequent to a light-dark cycle was more intense in the active phase continuing from the scotophase than from the photophase of the preceding light-dark cycle; this indicates the presence of circadian components. These results suggest that two clock systems are involved in controlling locomotor activity in mangrove crickets.  相似文献   

13.
Larval release patterns in brachyuran crabs are often synchronized with environmental cycles. While previous studies have focused extensively on supratidal and intertidal taxa, there have been relatively few investigations of subtidal species. This study examined patterns of larval release by the Florida stone crab, Menippe mercenaria, from three different tidal regimes. Ovigerous stone crabs were collected from Sebastian Inlet on the east coast of Florida, Tampa Bay on the west coast of Florida, and the Florida Keys. Patterns of larval release were monitored in the laboratory in relation to local tidal and diel cycles. Results showed a significant diel pattern in initiation of hatching by crabs from each of three study areas. Larval release consistently occurred during the diurnal phase despite the maintenance of females in constant laboratory conditions for up to 96 h prior to hatching. This implies that release may be controlled by a circadian clock. Patterns of release by stone crabs in relation to tidal cycle were more variable. Larval release by females from populations near Tampa Bay and Sebastian Inlet were not synchronized with the tides, whereas females collected from the Florida Keys exhibited a pattern that was strongly related to tidal cycle. These results may be explained by differences in tidal amplitude at the three sampling locations.  相似文献   

14.
Summary In cultures of a subtropical population of the one-hour midgeClunio tsushimensis, semilunar rhythms of emergence with a period of 15 days can be entrained by using artificial moonlight cycles of 30 days in otherwise invariant 24-h lightdark cycles (0.3 lux over four successive nights every 30 days of LD 1212). After changing to an invariant photoperiod (LD 1212 without the moonlight programme) or even to continuous darkness, freerunning semilunar rhythms were observed for up to 3 months using cultures of a mixed age structure containing all larval instars. The mean period was 14.2 days at 19 °C, i.e. clearly shorter than under entraining conditions (14.7 days in nature, 15.0 days with the artificial zeitgeber). In the range 14°–24 °C (corresponding to the mean seawater temperatures at the place of origin in winter and summer) there was only slight temperature dependence. The Q10 of the circasemilunar period, however, was not significantly different from 1.0. In continuous darkness the freerunning period was about 15.2 days. Both experiments provide supporting evidence for the existence of a temperature-compensated circasemilunar oscillator acting as an endogenous clock mechanism controlling the timing of imaginal disc formation and pupation in the intertidal chironomid.Dedicated to Prof. Colin S. Pittendrigh on the occasion of his 70th birthday, in recognition of his leading and stimulating contributions in the field of biological timing systems  相似文献   

15.
Summary On a marine saltmarsh, the intertidal mite, Bdella interrupta Evans, is exposed to periods of regular tidal submergence which alternate with periods of tidal emergence. The mite shows well defined day and night peaks of locomotory activity on the soil surface. During periods of tidal submergence the activity peaks showed an apparent periodicity, of around 12.5 h, characteristic of a tidal rhythm. In the presence of non-submerging tides the periodicity of the activity peaks changed to around 11.5 h. It is suggested that this shorter periodicity results either from free-running of the circatidal clock in the absence of entraining tides or from a sequence of transients that are phaseshifting towards a stable relationship with a second zeitgeber. It is further suggested that the alternation between a ca. 12.5 h and a ca. 11.5 h rhythm ensures that an activity peak is maintained in daylight and, also, reduces the possibility of inundation during the first critical floodings during sequences of rising spring tides.  相似文献   

16.
Among the organic matter ingested by fiddler crabs, microphytobenthos is of fundamental importance because it is their main N source. Microphytobenthos abundance generally develop semilunar changes as the dynamics of tidal exposures and day-night cycle are not held constant across days, modifying the balance between growth and mortality. In this study we explored the coupling between temporal dynamics in microphytobenthos abundance and crab feeding activity. We measured the Chlorophyll a content in the 2 mm surficial sediment surrounding the burrows and the crab feeding activity over two semilunar cycles. Chlorophyll a and crab feeding activity showed biweekly cyclic dynamics. Crabs did not concentrate feeding activity around days with maximum abundance of microhytobenthos. This phase difference between both dynamics could be the result of the crab feeding impact, but a crab experimental exclusion showed that the temporal dynamics of Chlorophyll a content stayed unchanged when feeding activity was removed. Comparisons between fed and unfed sediment suggest that the feeding efficiency changes with tidal dynamic. Crabs achieved more than 50% of Chlorophyll a extraction during days of highest feeding activity, and less than 30% during days of low feeding activity or low microhytobenthos abundance. Furthermore, comparisons of fed sediment between consecutive days indicated that Chlorophyll a was completely replenished during days with high flooding tides, but partially replenished during days near neap tides. Environmental conditions affecting feeding efficiency may select crabs to concentrate feeding activity before days with the highest microhytobenthos abundance. The low feeding impact on microphytobenthos dynamics suggests that fiddler crabs would not control microhytobenthos abundance and thus unable to absorb the increasing eutrophication of studied estuarine areas.  相似文献   

17.
In the laboratory, horseshoe crabs express a circadian rhythm of visual sensitivity as well as daily and circatidal rhythms of locomotion. The major goal of this investigation was to determine whether the circadian clock underlying changes in visual sensitivity also modulates locomotion. To address this question, we developed a method for simultaneously recording changes in visual sensitivity and locomotion. Although every animal (24) expressed consistent circadian rhythms of visual sensitivity, rhythms of locomotion were more variable: 44% expressed a tidal rhythm, 28% were most active at night, and the rest lacked statistically significant rhythms. When exposed to artificial tides, 8 of 16 animals expressed circatidal rhythms of locomotion that continued after tidal cycles were stopped. However, rhythms of visual sensitivity remained stable and showed no tendency to be influenced by the imposed tides or locomotor activity. These results indicate that horseshoe crabs possess at least two biological clocks: one circadian clock primarily used for modulating visual sensitivity, and one or more clocks that control patterns of locomotion. This arrangement allows horseshoe crabs to see quite well while mating during both daytime and nighttime high tides.  相似文献   

18.
The blue crab Callinectes sapidus settles and metamorphoses in areas of aquatic vegetation in estuaries. Crabs in the first-fifth instar stages (J1-5) then emigrate from these areas by walking on the bottom or pelagic dispersal throughout estuaries. The present study was designed to characterize the timing of this migration pattern relative to the light-dark and tidal cycles. Field sampling in Pamlico Sound, NC, USA indicated that J4-5 juveniles were most abundant in the water column during the night. J4-5 juveniles were collected from Pamlico Sound in an area near Oregon Inlet that has semi-diurnal tides, a Mid-Sound area where tides are weak, and on the West side where regular tides do not occur. Crabs from all three sites had a circadian rhythm in which they swam up in the water column during the time of darkness in the field. Peak swimming consistently occurred at about 0300 h, but was not related to the timing of the tidal cycle. Similar results were obtained for juvenile crabs from an adjacent estuary having semi-diurnal tides. Dispersal at night reduces predation by visual predators, and allows early juvenile blue crabs to disperse planktonically from initial settlement sites.  相似文献   

19.
Animals living on upper intertidal mudflats experience habitat desiccation during neap tides when water does not flood the habitat. Individuals of the manicure crab Cleistostoma dilatatum construct cone-shaped towers at the entrance of their burrows, in which they remain during neap tides. These towers are the tallest known structures compared to body size built by crabs living on intertidal flats. The frequency of tower construction followed semilunar tidal cycles with most building done prior to neap tides when few crabs were active on the mudflat surface. Bigger crabs tended to make taller and wider towers with a wider pinhole on the top. These towers may regulate the microclimate in burrows.  相似文献   

20.
The monthly reproductive rhythm in the diadematid sea urchin Centrostephanus coronatus Verrill at Santa Catalina Island, California, was studied in the summer of 1973 and the results are compared with data for the summer of 1969. In the summer of 1973 the more extreme spring tides coincided with the new moon, while in the summer of 1969 the more extreme spring tides coincided with the full moon. The reproductive rhythm in both years was closely synchronized with lunar phases and not with the monthly tidal cycles; spawning occurred near the third lunar quarter in both years. These observations suggest that this monthly reproductive rhythm is synchronized by monthly changes in moonlight, and not by monthly tidal changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号