首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pattern recognition proteins play an important role in the innate immune response of invertebrates. Herein we report the evolutionary relationships among Gram-negative bacteria binding proteins (GNBPs) that were previously identified and characterized from a wide array of invertebrates. Our results, together with those obtained in previous studies, indicate that decapod lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP/BGBP) has retained the crucial components for glucanase activity, and shares a common ancestor with GNBPs, as well as with the glucanase proteins of a wide range of invertebrates, rather than with GNBPs of some arthropods. However, experimental evidence of earlier studies suggested a lack of glucanase activity by these proteins, thus implying that during evolutionary time these proteins might have lost their glucan binding protein, but retained their glucan binding activity. The present results have also revealed that although a vast majority of the decapod LGBP/BGBP codons are constrained to purifying selection, certain codons are shown to have a higher rate of nonsynonymous substitutions per nonsynonymous site (dN) than synonymous substitutions per synonymous site (dS), indicating these codons have evolved adaptively (dN/dS>1). Although purifying selection (dN/dS<1) appears to be the major driving force in the evolution of a vast majority of LGBP/BGBP codons in decapods, the findings of several hotspots for nonsynonymous substitutions in this protein indicate host immune selection might play an important role in maintaining diversity among these ecologically diversified decapod species.  相似文献   

2.
3.
A number of statistical tests have been proposed to detect positive Darwinian selection affecting a few amino acid sites in a protein, exemplified by an excess of nonsynonymous nucleotide substitutions. These tests are often more powerful than pairwise sequence comparison, which averages synonymous (d(S)) and nonsynonymous (d(N)) rates over the whole gene. In a recent study, however, Hughes AL and Friedman R (2005. Variation in the pattern of synonymous and nonsynonymous difference between two fungal genomes. Mol Bio Evol. 22: 1320-1324) argue that d(S) and d(N) are expected to fluctuate along the sequence by chance and that an excess of nonsynonymous differences in individual codons is no evidence for positive selection. The authors compared codons in protein-coding genes from the genomes of 2 yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus. They calculated the proportions of synonymous and nonsynonymous differences per site (p(S) and p(N)) in every codon and discovered that p(N) is often greater than p(S) and that among some codons p(S) and p(N) are negatively correlated. The authors argued that these results invalidate previous tests of codons under positive selection. Here I discuss several errors of statistics in the analysis of Hughes and Friedman, including confusion of statistics with parameters, arbitrary data filtering, and derivation of hypotheses from data. I also apply likelihood ratio tests of positive selection to the yeast data and illustrate empirically that Hughes and Friedman's criticisms on such tests are not valid.  相似文献   

4.
Summary Based on the rates of synonymous substitution in 42 protein-codin gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the varition in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage.  相似文献   

5.
The proportion of synonymous nucleotide differences per synonymous site (p(S)) and the proportion of nonsynonymous differences per nonsynonymous site (p(N)) were computed at 1,993,217 individual codons in 4,133 protein-coding genes between the two yeast species Saccharomyces cerevisiae and Saccharomyces paradoxus. When the modified Nei-Gojobori method was used, significantly more codons with p(N) > p(S) were observed than expected, based on random pairing of observed p(S) and p(N) values. However, this finding was most likely explained by the presence of a strong negative correlation between the number of synonymous differences and the number of nonsynonymous differences at codons with at least one difference. As a result of this correlation, codons with p(N) > p(S) were characterized not only by unusually high p(N) but also by unusually low p(S). On the other hand, the number of codons with p(N)>p(S) (where p(S) is the mean p(S) for all codons) was very similar to the random expectation, and the observed number of 30-codon windows with p(N) > p(S) was significantly lower than the random expectation. These results imply that the occurrence of a certain number of codons or codon windows with p(N) > p(S) is expected given the nature of nucleotide substitution and need not imply the action of positive Darwinian selection.  相似文献   

6.
We humans have many characteristics that are different from those of the great apes. These human-specific characters must have arisen through mutations accumulated in the genome of our direct ancestor after the divergence of the last common ancestor with chimpanzee. Gene trees of human and great apes are necessary for extracting these human-specific genetic changes. We conducted a systematic analysis of 103 protein-coding genes for human, chimpanzee, gorilla, and orangutan. Nucleotide sequences for 18 genes were newly determined for this study, and those for the remaining genes were retrieved from the DDBJ/EMBL/GenBank database. The total number of amino acid changes in the human lineage was 147 for 26,199 codons (0.56%). The total number of amino acid changes in the human genome was, thus, estimated to be about 80,000. We applied the acceleration index test and Fisher's synonymous/nonsynonymous exact test for each gene tree to detect any human-specific enhancement of amino acid changes compared with ape branches. Six and two genes were shown to have significantly higher nonsynonymous changes at the human lineage from the acceleration index and exact tests, respectively. We also compared the distribution of the differences of the nonsynonymous substitutions on the human lineage and those on the great ape lineage. Two genes were more conserved in the ape lineage, whereas one gene was more conserved in the human lineage. These results suggest that a small proportion of protein-coding genes started to evolve differently in the human lineage after it diverged from the ape lineage.  相似文献   

7.
Cytochrome c oxidase (COX) is a multi-subunit enzyme complex that catalyzes the final step of electron transfer through the respiratory chain on the mitochondrial inner membrane. Up to 13 subunits encoded by both the mitochondrial (subunits I, II, and III) and nuclear genomes occur in eukaryotic organisms ranging from yeast to human. Previously, we observed a high number of amino acid replacements in the human COX IV subunit compared to mouse, rat, and cow orthologues. Here we examined COX IV evolution in the two groups of anthropoid primates, the catarrhines (hominoids, cercopithecoids) and platyrrhines (ceboids), as well as one prosimian primate (lorisiform), by sequencing PCR-amplified portions of functional COX4 genes from genomic DNAs. Phylogenetic analysis of the COX4 sequence data revealed that accelerated nonsynonymous substitution rates were evident in the early evolution of both catarrhines and, to a lesser extent, platyrrhines. These accelerated rates were followed later by decelerated rates, suggesting that positive selection for adaptive amino acid replacement became purifying selection, preserving replacements that had occurred. The evidence for positive selection was especially pronounced along the catarrhine lineage to hominoids in which the nonsynonymous rate was first faster than the synonymous rate, then later much slower. The rates of three types of ``neutral DNA' nucleotide substitutions (synonymous substitutions, pseudogene nucleotide substitutions, and intron nucleotide substitutions) are similar and are consistent with previous observations of a slower rate of such substitutions in the nuclear genomes of hominoids than in the nuclear genomes of other primate and mammalian lineages. Received: 22 May 1996 / Accepted: 24 November 1996  相似文献   

8.
In vertebrate animals, genes of the major histocompatibility complex (MHC) determine the set of pathogens to which an individual's adaptive immune system can respond. MHC genes are extraordinarily polymorphic, often showing elevated nonsynonymous relative to synonymous sequence variation and sharing presumably ancient polymorphisms between lineages. These patterns likely reflect pathogen‐mediated balancing selection, for example, rare‐allele or heterozygote advantage. Such selection is often reinforced by disassortative mating at MHC. We characterized exon 2 of MHC class II, corresponding to the hypervariable peptide‐binding region, in song sparrows (Melospiza melodia). We compared nonsynonymous to synonymous sequence variation in order to identify positively selected sites; assessed evidence for trans‐species polymorphisms indicating ancient balancing selection; and compared MHC similarity of socially mated pairs to expectations under random mating. Six codons showed elevated ratios of nonsynonymous to synonymous variation, consistent with balancing selection, and we characterized several alleles similar to those occurring in at least four other avian families. Despite this evidence for historical balancing selection, mated pairs were significantly more similar at MHC than were randomly generated pairings. Nonrandom mating at MHC thus appears to partially counteract, not reinforce, pathogen‐mediated balancing selection in this system. We suggest that in systems where individual fitness does not increase monotonically with MHC diversity, assortative mating may help to avoid excessive offspring heterozygosity that could otherwise arise from long‐standing balancing selection.  相似文献   

9.
Ford MJ 《Molecular ecology》2000,9(7):843-855
This paper describes DNA sequence variation within and among four populations of chinook salmon (Oncorhynchus tshawytscha) at the transferrin, somatolactin and p53 genes. Patterns of variation among salmon species at the transferrin gene have been hypothesized to be shaped by positive natural selection for new alleles because the rate of nonsynonymous substitution is significantly greater than the rate of synonymous substitution. The twin goals of this study were to determine if the history of selection among salmon species at the transferrin gene is also reflected in patterns of intraspecific variation in chinook salmon, and to look for evidence of local adaptation at the transferrin gene by comparing patterns of nonsynonymous and synonymous variation among chinook salmon populations. The analyses presented here show that unlike patterns of variation between species, there is no evidence of greater differentiation among chinook salmon populations at nonsynonymous compared to synonymous sites. There is also no evidence of a reduction of within-species variation due to the hitchhiking effect at the transferrin gene, although in some populations nonsynonymous and synonymous derived mutations are both at higher frequencies than expected under a simple neutral model. Population size weighted selection coefficients (4Ns) that are consistent with both the inter and intraspecific data range from approximately 10 to approximately 235, and imply that between 1 and 40% of new nonsynonymous mutations at the transferrin gene have been beneficial.  相似文献   

10.
Adaptive Diversification of Vomeronasal Receptor 1 Genes in Rodents   总被引:5,自引:0,他引:5  
The vomeronasal receptor 1 (V1R) are believed to be pheromone receptors in rodents. Here we used computational methods to identify 95 and 62 new putative V1R genes from the draft rat and mouse genome sequence, respectively. The rat V1R repertoire consists of 11 subfamilies, 10 of which are shared with the mouse, while rat appears to lack the H and I subfamilies found in mouse and possesses one unique subfamily (M). The estimations of the relative divergence times suggest that many subfamilies originated after the split of rodents and primates. The analysis also reveals that these clusters underwent an expansion very close to the split of mouse and rat. In addition, maximum likelihood analysis showed that the nonsynonymous and synonymous rate ratio for most of these clusters was much higher than one, suggesting the role of positive selection in the diversification of these duplicated V1R genes. Because V1R are thought to mediate the process of signal transduction in response to pheromone detection, we speculate that the V1R genes have evolved under positive Darwinian selection to maintain the ability to discriminate between large and complex pheromonal mixtures.Reviewing Editor: Dr. Rasmus Nielsen  相似文献   

11.
Nucleotide sequence of mouse Tcp-1a cDNA   总被引:3,自引:0,他引:3  
We have isolated complete cDNA clones encoding the mouse t-complex polypeptides 1A and 1B (TCP-1A and TCP-1B) from t-haplotype and wild-type (wt) mice, respectively. The complete nucleotide (nt) sequence of the Tcp-1a cDNA was determined. The Tcp-1a cDNA has an open reading frame (ORF) encoding a 60-kDa protein of 556 amino acids (aa). A comparison of nt sequences between the Tcp-1a and Tcp-1b cDNAs revealed that the 1786-bp regions upstream from their polyadenylation signals differed by 17 substitutions and that Tcp-1a had different polyadenylation sites from Tcp-1b. In these ORFs, 15 bp were substituted between the two alleles, occurring in 14 codons and resulting in eleven single-aa substitutions. Among these 15 substitutions, twelve were nonsynonymous (aa change) and three were synonymous (no aa change). The aa substitution in TCP-1 has occurred at least 20 times faster between t-haplotype and wt than between mouse and human or mouse and Drosophila.  相似文献   

12.
We estimated the intensity of selection on preferred codons in Drosophila pseudoobscura and D. miranda at X-linked and autosomal loci, using a published data set on sequence variability at 67 loci, by means of an improved method that takes account of demographic effects. We found evidence for stronger selection at X-linked loci, consistent with their higher levels of codon usage bias. The estimates of the strength of selection and mutational bias in favor of unpreferred codons were similar to those found in other species, after taking into account the fact that D. pseudoobscura showed evidence for a recent expansion in population size. We examined correlates of synonymous and nonsynonymous diversity in these species and found no evidence for effects of recurrent selective sweeps on nonsynonymous mutations, which is probably because this set of genes have much higher than average levels of selective constraints. There was evidence for correlated effects of levels of selective constraints on protein sequences and on codon usage, as expected under models of selection for translational accuracy. Our analysis of a published data set on D. melanogaster provided evidence for the effects of selective sweeps of nonsynonymous mutations on linked synonymous diversity, but only in the subset of loci that experienced the highest rates of nonsynonymous substitutions (about one-quarter of the total) and not at more slowly evolving loci. Our correlational analysis of this data set suggested that both selective constraints on protein sequences and recurrent selective sweeps affect the overall level of codon usage.  相似文献   

13.
It has been suggested that volatility, the proportion of mutations which change an amino acid, can be used to infer the level of natural selection acting upon a gene. This conjecture is supported by a correlation between volatility and the rate of nonsynonymous substitution (dN), or the ratio of nonsynonymous and synonymous substitution rates, in a variety of organisms. These organisms include yeast, in which the correlations are quite strong. Here we show that these correlations are a by-product of a correlation between synonymous codon bias toward translationally optimal codons and dN. Although this analysis suggests that volatility is not a good measure of the selection, we suggest that it might be possible to infer something about the level of natural selection, from a single genome sequence, using translational codon bias.  相似文献   

14.
Reduced 5,10-methylenetetrahydrofolate reductase (MTHFR) results in a number of human diseases. To find a model mouse sensitive to these diseases, we analyzed single-nucleotide polymorphisms (SNPs) of the mouse Mthfr using 23 phylogenetically distant strains of mouse. We found five SNPs: two nonsynonymous and three synonymous. The CAST/Ei strain has the nonsynonymous SNP L350V and five strains (NMRI, KJR, SWN2, MSM, and JF1) have the nonsynonymous SNP S22G. The MTHFR activity of CAST/Ei and MSM showed no significant difference in activity or thermostability compared with that of C57BL/6J. We also found a pseudogene segment of the mouse Mthfr that was not present in human and was more frequently variable than the functional gene. These results suggest a possibility that the truncated pseudogene may buffer variations of the mouse Mthfr functional gene, and the mouse has evolved fewer variations of the gene than human.  相似文献   

15.
MHC class I cDNA sequences from the most divergent primate group of extant primates compared to human, the suborder Strepsirrhini (prosimians), are described. The sequences are derived from the gray mouse lemur (Microcebus murinus) and the ring-tailed lemur (Lemur catta), which are members of the malagasy Lemuriformes, as well as from the pygmy slow loris (Nycticebus pygmaeus), a prosimian from East Asia. The M. murinus sequences have been analyzed in detail. Analysis of the expression level, G/C content, and synonymous vs. nonsynonymous substitution rates in the peptide-binding region codons suggests that these cDNA clones represent classical class I (class Ia) genes. According to Southern blot analysis, the genome of the gray mouse lemur might contain about 10 class I genes. In gene tree analysis, the strepsirrhine class Ia genes described here cluster significantly separately from the known class I genes of Catarrhini (humans, apes, Old World monkeys) and Platyrrhini (New World monkeys) species, suggesting that the class I loci of Simiiformes arose by gene duplications which occurred after the divergence of prosimians.  相似文献   

16.
Widespread positive selection in synonymous sites of mammalian genes   总被引:5,自引:0,他引:5  
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in protein-coding genes was developed. The method compares the rate of evolution at synonymous sites (Ks) to that in intron sequences of the same gene after sampling the aligned intron sequences to mimic the statistical properties of coding sequences. We detected purifying selection at synonymous sites in approximately 28% of the 1,562 analyzed orthologous genes from mouse and rat, and positive selection in approximately 12% of the genes. Thus, the fraction of genes with readily detectable positive selection at synonymous sites is much greater than the fraction of genes with comparable positive selection at nonsynonymous sites, i.e., at the level of the protein sequence. Unlike other genes, the genes with positive selection at synonymous sites showed no correlation between Ks and the rate of evolution in nonsynonymous sites (Ka), indicating that evolution of synonymous sites under positive selection is decoupled from protein evolution. The genes with purifying selection at synonymous sites showed significant anticorrelation between Ks and expression level and breadth, indicating that highly expressed genes evolve slowly. The genes with positive selection at synonymous sites showed the opposite trend, i.e., highly expressed genes had, on average, higher Ks. For the genes with positive selection at synonymous sites, a significantly lower mRNA stability is predicted compared to the genes with negative selection. Thus, mRNA destabilization could be an important factor driving positive selection in nonsynonymous sites, probably, through regulation of expression at the level of mRNA degradation and, possibly, also translation rate. So, unexpectedly, we found that positive selection at synonymous sites of mammalian genes is substantially more common than positive selection at the level of protein sequences. Positive selection at synonymous sites might act through mRNA destabilization affecting mRNA levels and translation.  相似文献   

17.
We report the discovery of a duplication of the growth hormone (GH) gene in a major group of birds, the passerines (Aves: Passeriformes). Phylogenetic analysis of 1.3-kb partial DNA sequences of GH genes for 24 species of passerines and numerous outgroups indicates that the duplication occurred in the ancestral lineage of extant passerines. Both duplicates and their open-reading frames are preserved throughout the passerine clade, and both duplicates are expressed in the zebra finch brain, suggesting that both are likely to be functional. The estimated rates of amino acid evolution are more than 10-fold higher in passerine GH genes than in those of their closest nonpasserine relatives. In addition, although the 84 codons sequenced are generally highly conserved for both passerines and nonpasserines, comparisons of the nonsynonymous/synonymous substitution ratios and the rate of predicted amino acid changes indicate that the 2 gene duplicates are evolving under different selective pressures and may be functionally divergent. The evidence of differential selection, coupled with the preservation of both gene copies in all major lineages since the origin of passerines, suggests that the duplication may be of adaptive significance, with possible implications for the explosive diversification of the passerine clade.  相似文献   

18.
All established methods for detecting positive selection at the molecular level rely on comparisons between nucleotide sequences. An exceptional method that purports to detect selection on the basis of a single genomic sequence has recently been proposed. This method uses a measure called "codon volatility," defined for each codon as the ratio between the number of nonsynonymous codons that differ from the codon under study at a single nucleotide position and the number of sense codons that differ from the codon under study at a single nucleotide position. Here, we examine various properties of codon volatility and its derivatives and use simulation of evolutionary processes to determine whether they can be used to detect selective pressures. Codons for only four amino acids (glycine, leucine, arginine, and serine) show any variation in codon volatility. Thus, codon volatility is mainly a proxy for amino acid usage, rather than for codon usage, with 65% of all synonymous changes and 27% of all nonsynonymous changes being undetectable by this measure. Genes identified by the volatility method as being subject to positive selection tend to have idiosyncratic amino acid compositions (e.g., they are glycine rich or arginine poor). An additional property of codon volatility is the near zero variance of its mean expectation, which translates into overestimated statistical significance estimates, especially in the absence of corrections for multiple comparisons. A comparison with measures of selection inferred through comparative methodology reveals no relationship between the results of the two methods. Finally, we show that codon volatility can increase in the absence of positive Darwinian selection; that is, increased codon volatility is not indicative of positive selection.  相似文献   

19.
Summary The -crystallin proteins consist of two topologically equivalent domains, each built up out of two similar motifs. They are encoded by a gene family, which already contained five members before the divergence of rodents and primates. A further gene duplication took place in each lineage. To analyze the pattern of evolution within this gene family, the coding sequences of six human genes, six rat genes, and four mouse genes were compared. Between species, a uniform rate of evolution of all regions of the protein is seen. The ratio of synonymous to nonsynonymous substitution in the human/rat or human/mouse comparison is much lower than the ratio when rat and mouse are compared indicating that the -crystallin proteins are better conserved in the rodent lineage. Within species, the regions encoding the two external motifs I and III of the protein show a greater extent of nonsynonymous substitution than the regions encoding the two internal protein motifs II and IV. The low extent of synonymous substitution between the second exons (encoding motifs I and II) of the rat -crystallin genes suggests the frequent occurrence of gene conversion. In contrast, a high extent of synonymous substitution is found in exon 3 (encoding motifs III and IV) of the rat genes. The same phenomenon is seen within the human gene family. The frequencies of occurrence of the various dinucleotides deviate less from those predicted from the frequencies of occurrence of each individual nucleotide in the second exons than in the third exons. The sequences of the third exons are significantly depleted in CpG, ApA, and GpT and enriched in CpT and GpA.  相似文献   

20.
Many organisms exhibit biased codon usage in their genome, including the fungal model organism Neurospora crassa. The preferential use of subset of synonymous codons (optimal codons) at the macroevolutionary level is believed to result from a history of selection to promote translational efficiency. At present, few data are available about selection on optimal codons at the microevolutionary scale, that is, at the population level. Herein, we conducted a large-scale assessment of codon mutations at biallelic sites, spanning more than 5,100 genes, in 2 distinct populations of N. crassa: the Caribbean and Louisiana populations. Based on analysis of the frequency spectra of synonymous codon mutations at biallelic sites, we found that derived (nonancestral) optimal codon mutations segregate at a higher frequency than derived nonoptimal codon mutations in each population; this is consistent with natural selection favoring optimal codons. We also report that optimal codon variants were less frequent in longer genes and that the fixation of optimal codons was reduced in rapidly evolving long genes/proteins, trends suggestive of genetic hitchhiking (Hill-Robertson) altering codon usage variation. Notably, nonsynonymous codon mutations segregated at a lower frequency than synonymous nonoptimal codon mutations (which impair translational efficiency) in each N. crassa population, suggesting that changes in protein composition are more detrimental to fitness than mutations altering translation. Overall, the present data demonstrate that selection, and partly genetic interference, shapes codon variation across the genome in N. crassa populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号