首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary.  This study investigated the effects of bilobalide, a constituent of Ginkgo biloba, on potassium and veratridine-induced release of glutamate and aspartate from mouse cortical slices. We also studied its effects on spontaneous and N-methyl-D-aspartate (NMDA)-induced depolarizations elicited in magnesium-free artificial cerebrospinal fluid (aCSF) as well as its effect on NO-711 (a γ-aminobutyric acid (GABA) uptake inhibitor)-induced depolarizations. Bilobalide, 100 μM significantly reduced both glutamate and aspartate release elicited by potassium or veratridine. Bilobalide (5–100 μM) also significantly reduced the frequency of NO-711 induced depolarizations, however, it had no effect on spontaneous or on NMDA-induced depolarizations at 5–200 μM. These results suggest that the neuroactive properties of bilobalide may be mediated by a reduction in excitatory amino acid neurotransmitter release. Received June 25, 2001 Accepted October 4, 2001  相似文献   

2.

Background

Hippocampal slices swell and release taurine during oxidative stress. The influence of cellular signalling pathways on this process is unclear. Glutamate signalling can facilitate volume regulation in other CNS preparations. Therefore, we hypothesize activation of taurine release by oxidative stress results from tissue swelling and is coupled to activation of glutamate receptors.

Methods

Rat hippocampi were incubated at room temperature for 2 hr in artificial cerebrospinal fluid (aCSF) equilibrated with 95% O2 plus 5% CO2. For some slices, 1 mM taurine was added to the aCSF to maintain normal tissue taurine content. Slices then were perfused with aCSF at 35° C and baseline data recorded before 2 mM H2O2 was added. For some studies, mannitol or inhibitors of glutamate receptors or the volume-regulated anion channel (VRAC) were added before and during H2O2 treatment. The intensity of light transmitted through the slice (the intrinsic optical signal, IOS) was determined at 1-min intervals. Samples of perfusate were collected at 2-min intervals and amino acid contents determined by HPLC. Data were analyzed by repeated measures ANOVA and post hoc Dunnett’s test with significance indicated for p<0.05.

Results

IOS of slices prepared without taurine treatment increased significantly by 3.3±1.3% (mean±SEM) during oxidative stress. Little taurine was detected in the perfusate of these slices and the rate of taurine efflux did not change during H2O2 exposure. The α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate antagonist, 25 µM CNQX, but not the N-methyl-D-aspartate (NMDA) receptor antagonist, 10 µM MK-801, inhibited the increase in IOS during H2O2 treatment. Taurine-treated slices exposed to H2O2 showed no change in IOS; however, taurine efflux increased by 335±178%. When these slices were perfused with hypertonic aCSF (350 mOsm) or exposed to the VRAC inhibitor, 20 µM DCPIB, no increase in the taurine efflux rate was observed during H2O2 exposure. Taurine-treated slices perfused with 10 µM MK-801 during H2O2 exposure showed a 4.6±1.9% increase in IOS but no increase in the taurine efflux rate.

Conclusions

Taurine efflux via VRAC is critical for volume regulation of hippocampal slices exposed to oxidative stress. This increased taurine efflux does not result from direct activation of the taurine release pathway by H2O2. NMDA receptor activation plays an important role in taurine release during oxidative stress.
  相似文献   

3.
The aim of this study was to investigate the effects of preconditioning on amino acid neurotransmitter release, induced by hypoxia/hypoglycaemia, from rat brain cortical slices. Tissue, perfused with artificial cerebrospinal fluid (aCSF) at 37 degrees C with zero glucose and gassed with 95% nitrogen and 5% carbon dioxide, showed a fivefold increase in glutamate release with little effect on gamma-aminobutyric acid (GABA) release. Preconditioning, with three 5-min periods of hypoxia/hypoglycaemia preceding continuous hypoxia/hypoglycaemia, significantly decreased glutamate release whilst significantly elevating GABA release. These results suggest that GABA may reduce the release of glutamate and consequently decrease the neurotoxic effects of glutamate.  相似文献   

4.
In the present study, we investigated the effect of Ginkgo biloba extract, EGb 761, and one of its components, bilobalide, on gene expression of subunit 1 of mitochondrial NADH dehydrogenase (ND1) in PC12 cells. By Northern blot analysis we found a 2-fold significant increase in ND1 mRNA level, after 48 and 72 h exposure to 100 g/ml EGb 761 and to 10 g/ml bilobalide. We also evaluated, by oxygraphy measurements, mitochondrial respiration during state 3 and state 4. In cells treated with EGb 761 and bilobalide for 48 and 72 h, state 4 respiration was significantly decreased, and the respiratory control ratio was increased. These results provide evidence that EGb 761 and bilobalide exert their protective effects by up-regulating mitochondrial ND1 gene expression and by decreasing state 4 respiration, whose increase is thought to be responsible for oxidative damage.  相似文献   

5.
The ventrolateral thalamus (VL) is a primary relay point between the basal ganglia and the primary motor cortex (M1). Using dual probe microdialysis and locomotor behavior monitoring, we investigated the contribution of VL input into M1 during amphetamine (AMPH)‐stimulated monoamine release and hyperlocomotion in rats. Tetrodotoxin (10 μM) perfusion into the VL significantly lowered hyperactivity induced by AMPH (1 mg/kg i.p.). This behavioral response corresponded to reduced cortical glutamate and monoamine release. To determine which glutamate receptors the thalamocortical projections acted upon, we perfused either the α‐amino‐3‐(3‐hydroxy‐5‐methyl‐isoxazol‐4‐yl)propanoic acid (AMPA)/kainate receptor antagonist 2,3‐dihydroxy‐6‐nitro‐7‐sulfamoyl‐benzo[f]quinoxaline‐2,3‐dione (NBQX) (10 μM) or the N‐methyl‐D‐aspartic acid (NMDA) receptor antagonist (MK‐801) intracortically followed by systemic AMPH. The results show that AMPA/kainate, and to a lesser extent NMDA receptors, mediated the observed effects. As glutamate–monoamine interactions could possibly occur through local or circuit‐based mechanisms, we isolated and perfused M1 tissue ex vivo to determine the extent of local glutamate–dopamine interactions. Taken together, these results demonstrate that AMPH generates hyperlocomotive states via thalamocortical signaling and that cortical AMPA receptors are an important mediator of these effects.

  相似文献   


6.
1. Our method of real-time monitoring of dopamine release from rat striatal slices revealed that endothelin (ET)-3-induced dopamine release was inhibited by N G-methyl-L-arginine (L-NMMA; 1 mM), an inhibitor of nitric oxide (NO) synthase, while N G-methyl-D-arginine (D-NMMA; 1 mM), an inactive isomer of L-NMMA, had no effect.2. The inhibition of L-NMMA (0.1 mM) became apparent when tissues were pretreated with tetrodotoxin (1 M) for 30 min and subsequently exposed to ET-3 (4 M).3. L-NMMA (0.1 and 1 mM) dose dependently protected against ET-3-triggered hypoxic/hypoglycemic impairment of striatal responses to high K+.4. Thus, NO may work as a promoter in mediation of the stimulatory and neurotoxic action of ET-3 on the striatal dopaminergic system, presumably by interacting with interneurons in the striatum.  相似文献   

7.
The effect of cellular hypoxia on glutathione levels in rat hearts was determined. Hearts perfused with 95% N2–5% CO2 demonstrated a significant decrease in tissue reduced glutathione content when compared to control hearts perfused with 95% O2–5% CO2. The hypoxic perfusate contained reduced glutathione and its release was time dependent over a period of 60 minutes. The cellular depletion of oxidized glutathione and its release into coronary effluent were less evident with respect to reduced glutathione. Moreover during hypoxic perfusion we have observed a decrease of cytosol glutathione peroxidase activity. These results suggest that severe oxygen-deprivation causes in myocardial cells a significant perturbation of glutathione metabolism.  相似文献   

8.
Benzoate stimulates glutamate release from perfused rat liver.   总被引:1,自引:1,他引:0       下载免费PDF全文
In isolated perfused rat liver, benzoate addition to the influent perfusate led to a dose-dependent, rapid and reversible stimulation of glutamate output from the liver. This was accompanied by a decrease in glutamate and 2-oxoglutarate tissue levels and a net K+ release from the liver; withdrawal of benzoate was followed by re-uptake of K+. Benzoate-induced glutamate efflux from the liver was not dependent on the concentration (0-1 mM) of ammonia (NH3 + NH4+) in the influent perfusate, but was significantly increased after inhibition of glutamine synthetase by methionine sulphoximine or during the metabolism of added glutamine (5 mM). Maximal rates of benzoate-stimulated glutamate efflux were 0.8-0.9 mumol/min per g, and the effect of benzoate was half-maximal (K0.5) at 0.8 mM. Similar Vmax. values of glutamate efflux were obtained with 4-methyl-2-oxopentanoate, ketomethionine (4-methylthio-2-oxobutyrate) and phenylpyruvate; their respective K0.5 values were 1.2 mM, 3.0 mM and 3.8 mM. Benzoate decreased hepatic net ammonia uptake and synthesis of both urea and glutamine from added NH4Cl. Accordingly, the benzoate-induced shift of detoxication from urea and glutamine synthesis to glutamate formation and release was accompanied by a decreased hepatic ammonia uptake. The data show that benzoate exerts profound effects on hepatic glutamate and ammonia metabolism, providing a new insight into benzoate action in the treatment of hyperammonaemic syndromes.  相似文献   

9.
1. When isolated kidneys from fed rats were perfused with glutamine the rate of ammonia release at pH7.4 (110–360μmol/h per g dry wt.) was one to two times that of glutamine removal. Glucose formation from 5mm-glutamine was 16μmol/h per g. If kidneys were perfused with glutamine at pH7.1 (10–13mm-sodium bicarbonate) there was no increase in glutamine removal or in the formation of ammonia or glucose. 2. When isolated kidneys from fed rats were perfused with glutamate at pH7.4, glucose formation was 59μmol/h per g, glutamine formation was 182μmol/h per g and ammonia release was negligible. At pH7.1 glutamine synthesis was inhibited and formation of ammonia and glucose were increased. 3. In perfused kidneys from acidotic rats, which had received 1.5% (w/v) NH4Cl to drink for 7–10 days, gluconeogenesis from glutamine was enhanced (101μmol/h per g). Glutamine removal and ammonia formation were also increased, compared with the rates in perfused kidney from normal rats. The extra glutamine consumed was equivalent to the extra glucose formed. 4. When the kidney from the 7–10-day-acidotic rat was perfused with glutamate gluconeogenesis was increased (113μmol/h per g). Synthesis of glutamine was decreased, and ammonia release was approximately equal to the rate of glutamate removal. 5. The time-course of these metabolic alterations was investigated after the rapid induction of acidosis by infusion of 0.25m-HCl into the right side of the heart. The increase in gluconeogenesis from glutamine developed gradually over several hours. When kidneys from 6h-acidotic rats were perfused with glutamate, formation of glucose and glutamine were both rapid. 6. In acidotic rat kidneys perfused with glutamine, tissue concentrations of glutamate and glucose 6-phosphate were increased compared with those in control perfused kidneys from non-acidotic rats. 7. The results are discussed in terms of control of the renal metabolism of glutamine. In particular, it is suggested that in acidotic rats glucose formation is the major fate of the carbon of the extra glutamine utilized by the kidney, and that inhibition of glutamine synthetase could contribute to the increase in intracellular ammonia concentration in the kidney.  相似文献   

10.
Effects of intracellular pH on hypoxic vasoconstriction in rat lungs   总被引:1,自引:0,他引:1  
Isolated rat lungs perfused with physiological salt-Ficoll solutions were studied to test whether hypoxic pulmonary vasoconstriction was potentiated by increases in intracellular pH (pHi) and blunted by decreases in pHi. Whereas addition to perfusate of 5 nM phorbol myristate acetate (PMA), a stimulator of exchange of intracellular H+ for extracellular Na+, potentiated hypoxic vasoconstriction, 1 mM amiloride, an inhibitor of Na+-H+ exchange, blunted the hypoxic response. Hypoxic vasoconstriction was also potentiated by the weak bases NH4Cl (20 mM), methylamine (10 mM), and imidazole (5 mM) and was inhibited by the weak acid sodium acetate (40 mM). NH4Cl, imidazole, and acetate had the same effects on KCl-induced vasoconstriction and on the hypoxic response. Hypoxic vasoconstriction was greater in lungs perfused with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solution than in those perfused with CO2/HCO3--buffered solution. Similarly, lungs perfused with CO2/HCO3--buffered solution containing 1.8 mM Cl- (NaNO3 and KNO3 substituted for NaCl and KCl) had larger hypoxic and angiotensin II pressor responses than those perfused with 122.5 mM Cl-. Because PMA, NH4Cl, methylamine, imidazole, HEPES-buffered solutions, and low-Cl- solutions can cause increases in pHi and amiloride and acetate can cause decreases in pHi, these results suggest that intracellular alkalosis and acidosis, respectively, potentiate and blunt vasoconstrictor responses to hypoxia and other stimuli in isolated rat lungs. These effects could be related to pHi-dependent changes in either the sensitivity of the arterial smooth muscle contractile machinery to Ca2+ or the release of a vasoactive mediator or modulator by some other lung cell.  相似文献   

11.
Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium‐evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4‐ and 7‐fold increase in potassium‐evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal‐dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability.

  相似文献   


12.
Summary We studied the effect of recombinant human IL-1 (rhIL-1) on hepatic amino acid (AA) flux in the isolated perfused rat liver model. Two experimental groups were used — a control group (n = 5) and a rhIL-1-treated group (n = 5). IL-1 was added to the perfusate in two successive boluses of 0.1µg and 0.9µg, respectively 35 min (final concentration 0.67 ng/ml) and 60 min (6 ng/ml) after beginning the perfusion. In the IL-1 treated group, a reduction in flux was observed for only three AA, alanine, phenylalanine and serine. Glucose and urea production in the IL-1-treated group was slightly but not-significantly lower than in the controls.rhIL-1 thus has only minor direct effects on AA flux and gluconeogenesis in the liver and cannot therefore be held responsible for the increase in hepatic amino acid uptake during stress.  相似文献   

13.
l-DOPA-induced dyskinesia is a common side effect developed after chronic treatment with 3,4-dihydroxyphenyl-l-alanine (l-DOPA) in Parkinson''s disease. The biological mechanisms behind this side effect are not fully comprehended although involvement of dopaminergic, serotonergic, and glutamatergic systems has been suggested. The present study utilizes in vivo amperometry to investigate the impact from unilateral 6-hydroxydopamine lesions and l-DOPA (4 mg/kg, including benserazide 15 mg/kg) -induced dyskinetic behavior on striatal basal extracellular glutamate concentration and potassium-evoked glutamate release in urethane-anesthetized rats. Recordings were performed before and after local l-DOPA application in the striatum. In addition, effects from the 5-HT1A receptor agonist (2R)-(+)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OHDPAT; 1 mg/kg) was assessed on glutamate release and on dyskinetic behavior. The results revealed a bilateral ∼30% reduction of basal extracellular glutamate concentration and attenuated potassium-evoked glutamate release after a unilateral dopamine-depletion in l-DOPA naïve animals. In dyskinetic subjects, basal glutamate concentration was comparable to normal controls, although potassium-evoked glutamate release was reduced to similar levels as in drug naïve dopamine-lesioned animals. Furthermore, acute striatal l-DOPA administration attenuated glutamate release in all groups, except in the dopamine-lesioned striatum of dyskinetic animals. Co-administration of 8-OHDPAT and l-DOPA decreased dyskinesia in dopamine-lesioned animals, but did not affect potassium-evoked glutamate release, which was seen in normal animals. These findings indicate altered glutamate transmission upon dopamine-depletion and dyskinesia.  相似文献   

14.
Summary The characteristics of nonelectrolyte secretion by the rabbit mandibular salivary gland have been investigated in anin vitro perfused preparation. The concentrations of14C-labeled nonelectrolytes were measured in saliva samples collected over a range of flow rates during the secretory response of the gland to continuous acetylcholine infusion. Of the nine nonelectrolytes studied, the two particularly lipid-soluble molecules, ethanol and antipyrine, appeared in the saliva at approximately the same concentration as in the perfusate, regardless of the secretory flow rate. The more polar molecules (urea, ethanediol, thiourea, glycerol, erythritol, mannitol and sucrose) appeared at saliva/perfusate concentration ratios () which showed a strong dependence on flow. With the exception of thiourea, this could be attributed to the combined contributions of diffusion and solvent drag.For the polar nonelectrolytes, estimates have been obtained of both the permeability coefficients of the gland (P) and the solvent-drag filtration coefficients (1–). The relation between 1– and molecular radius suggests that small polar nonelectrolytes and the bulk of the secreted water cross the epithelium via aqueous channels that are approximately 0.8 nm in width. The location of the channels remains uncertain because tissue space measurements indicate that the nonelectrolytes most affected by solvent drag have access to both transcellular and paracellular pathways.  相似文献   

15.
Summary The interactions between catecholamines and surfactants was investigated in perfused gills of the marine teleostPlatichthys flesus L. The activity of the branchial ion pumps was monitored via the electrogenic transepithelial potential (inside positive) measured in gills bathed and perfused with identical saline. Vascular resistance of the arterio-arterial and arterio-venous pathway was also recorded simultaneously by measuring respectively the afferent perfusion pressure and venous flow in gills perfused at constant flow and at constant efferent pressure. The specific effects of respective - and -adrenergic receptor stimulation was investigated by the administration of discrete doses of either adrenaline in the presence of 10 mol l–1 propranolol or isoprenaline in the perfusate. In the absence of surfactants the -adrenergic effects were an inhibition of electrogenic ion transport, a decrease in venous flow and an increase in the vascular resistance of the arterioarterial vascular pathway. In contrast the -adrenergic effects consisted of a stimulation of electrogenic ion transport and a vasodilation of the arterio-arterial pathway. Both anionic (linear alkyl sulphonate; sodium lauryl sulphate) and non-ionic (nonyl phenol ethoxylate; synthetic alcohol ethoxylate) surfactants were administered in the perfusate at nominal concentrations of 1 mol l–1 (0.3–0.5 mg l–1). None of these compounds had any effect on the affinity or the efficacy of the -adrenergic responses. In contrast there was a significant reduction in the efficacy of isoprenaline in the presence of all of the surfactants used but only in the case of the synthetic alcohol ethoxylate was there an effect on the affinity of this agonist for the -adrenergic receptor. The results are discussed in the context of the mechanism of action of these environmental contaminants and the nature of adrenergic receptors in the gill.  相似文献   

16.
Myofibrillar protein degradation was measured by the rate of Nτ-methylhistidine (MeHis) release from the perfused hindquarters in normal and streptozotocin-induced diabetic rats. In diabetic rats, the rate of MeHis release to the perfusate was elevated 2-fold compared with normal rats. The daily excretion of MeHis into urine was also increased 2-fold in the diabetic rats.

Insulin in the perfusate did not suppress the release of MeHis from the perfused muscle in normal rats. On the other hand, in diabetic rats, MeHis release was suppressed by insulin. The high concentration of free MeHis in the diabetic muscle was decreased to the normal level with insulin added to the perfusate. These results give further evidence to show that myofibrillar protein degradation is controlled by insulin.  相似文献   

17.
Ginkgolide and bilobalide are major trilactone constituent of Ginkgo biloba leaves and have been shown to exert powerful neuroprotective properties. The aims of this study were to observe the inhibitory effects of ginkgolide and bilobalide on the activation of microglial cells induced by oxygen–glucose deprivation and reoxygenation (OGD/R) and the specific mechanisms by which these effects are mediated. For detecting whether ginkgolide and bilobalide increased cell viability in a dose-dependent manner, BV2 cells were subjected to oxygen–glucose deprivation for 4 h followed by 3 h reoxygenation with various concentrations of drugs (6.25, 12.5, 25, 50, and 100 μg/ml). The extent of apoptosis effect of OGD/R with or without ginkgolide and bilobalide treatment were also measured by Annexin V-FITC/PI staining. Similarly, the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8, and IL-10 were detected using a specific Bio-Plex Pro? Reagent Kit. The effects of ginkgolide and bilobalide on protein levels of TLR2/4, MyD88, p-TAK1, p-IKKβ, p-IkBα, NF-κB p65, Bcl-2, Bax, Bak, RIP3, cleaved-Caspase-3, cleaved PARP-1 and cellular localization of NF-κB p65 were evaluated by Western blot and double-labeled immunofluorescence staining, respectively. OGD/R significantly decreased the cell viability and increased the release of IL-1β, IL-6, IL-8, IL-10, TNF-α in BV2 microglia cells; these effects were suppressed by ginkgolide and bilobalide. Meanwhile, ginkgolide and bilobalide also attenuated the OGD/R-induced increases in TLR2, TLR4, MyD88, Bak, RIP3 levels and reversed cleaved caspase-3/caspase-3, Bax/Bcl-2 and cleaved PARP-1/PARP-1 ratio. Furthermore, ginkgolide and bilobalide also downregulated p-TAK1, p-IkBα, and p-IKKβ and inhibited the OGD/R-induced transfer of NF-κB p65 from cytoplasm to nucleus in BV2 microglia cells. The results showed that ginkgolide and bilobalide can inhibit OGD/R-induced production of inflammatory factors in BV2 microglia cells by regulating the TLRs/MyD88/NF-κB signaling pathways and attenuating inflammatory response. The possible mechanism of anti-inflammatory and neuroprotective effects of ginkgolides results from the synergistic reaction among each monomer constituents.  相似文献   

18.

Background

The aberrant release of the neurotransmitters, glutamate and calcitonin-gene related peptide (CGRP), from trigeminal neurons has been implicated in migraine. The voltage-gated P/Q-type calcium channel has a critical role in controlling neurotransmitter release and has been linked to Familial Hemiplegic Migraine. Therefore, we examined the importance of voltage-dependent calcium channels in controlling release of glutamate and CGRP from trigeminal ganglion neurons isolated from male and female rats and grown in culture. Serotonergic pathways are likely involved in migraine, as triptans, a class of 5-HT1 receptor agonists, are effective in the treatment of migraine and their effectiveness may be due to inhibiting neurotransmitter release from trigeminal neurons. We also studied the effect of serotonin receptor activation on release of glutamate and CGRP from trigeminal neurons grown in culture.

Results

P/Q-, N- and L-type channels each mediate a significant fraction of potassium-stimulated release of glutamate and CGRP. We determined that 5-HT significantly inhibits potassium-stimulated release of both glutamate and CGRP. Serotonergic inhibition of both CGRP and glutamate release can be blocked by pertussis toxin and NAS-181, a 5-HT1B/1D antagonist. Stimulated release of CGRP is unaffected by Y-25130, a 5-HT3 antagonist and SB 200646, a 5-HT2B/2C antagonist.

Conclusion

These data suggest that release of both glutamate and CGRP from trigeminal neurons is controlled by calcium channels and modulated by 5-HT signaling in a pertussis-toxin dependent manner and probably via 5-HT1 receptor signaling. This is the first characterization of glutamate release from trigeminal neurons grown in culture.  相似文献   

19.
Summary In vivo voltammetry was used in freely moving rats to study the processes whereby striatal dopamine (DA) release is regulated by corticostriatal glutamatergic neurons. Electrical stimulation of the cerebral cortex was found to markedly increase the striatal DA-related voltammetric signal amplitude. Similar enhancements have been observed after intracerebroventricular administration of 10nmoles glutamate, quisqualate and AMPA, whereas NMDA was found to decrease the amplitude of the striatal signals. The NMDA receptor antagonist APV did not significantly affect the voltammetric signal but prevented the NMDA-induced depression of the DA-related signals. These data are in agreement with those obtained in numerous previous studies suggesting that the glutamatergic corticostriatal neurons exert activatory effects on the striatal DA release via non-NMDA receptors. The mechanism involved might be of a presynaptic nature. The role of the NMDA receptors may however consist of modulating the dopaminergic transmission phasically and in a depressive way, which would be consistent with behavioural data suggesting the existence of a functional antagonism between the activity of the corticostriatal glutamatergic and nigrostriatal dopaminergic systems.Abbreviations Glu glutamate - DA dopamine - NMDA N-methyl-D-aspartate - CPP 3-(2-carboxypiperazin-4µl)propyl-1-phosphonic acid - AMPA -amino-3-hydroxy-5-metylisoxazole-4-propionic acid - APV aminophosphonovaleric acid - DOPAC dihydroxyphenylacetic acid - HVA homovanillic acid - DARPP 32 dopamine-cAMP-regulated phosphoprotein 32 - CSF cerebrospinal fluid Laboratory associated with the University of Aix-Marseille II  相似文献   

20.
Within the last 30 years, researchers have explored what role hypoxia might play in causing permeability changes in the pulmonary microvasculature. Since the data accumulated thus far are unclear, the effects of hypoxia on microvascular transport in the isolated, Ringer's perfused adult rabbit lung was observed and the following parameters were measured or computed for both oxygenated and hypoxic perfusates: pulmonary arterial (ra) and pulmonary venous (rv) resistances, pulmonary capillary filtration coefficients (Kf), and pulmonary capillary endothelial reflection coefficients () for NaCl and inulin. Separate reservoir bottles were used to create the desired oxygenated (aeration of solution with 95% O2-5% CO2) gas mixture or hypoxic (aeration of solution with 95% N2-5% CO2) gas mixture. A higher, but not significant, resistance value was found during the oxygenated state. A significant increase in the pulmonary capillary filtration coefficient during hypoxia (10.72 × 10–4±0.446 × 10–4 cm3/s cm H2O for the hypoxic perfusate and 8.80 × 10–4±0.384 × 10–4 cm3/s cm H2O for the oxygenated perfusate) was found and a significant difference between oxygenated and hypoxic pulmonary capillary reflection coefficients for inulin was computed (oxygenated solution revealed a finding of 0.120±0.003 and the hypoxic solution revealed 0.105±0.002). These findings imply a change in the microvascular permeability during hypoxia. According to the pore theory, a change in pore number, pore size, or both could have occurred. However, from the reflection coefficient data, a change in pore radius seems most likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号