首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The survival of genetically engineered Erwinia carotovora L-864, with a kanamycin resistance gene inserted in its chromosome, was monitored in the water and sediment of aquatic microcosms. The density of genetically engineered and wild-type E. carotovora strains declined at the same rate, falling in 32 days below the level of detection by viable counts. We examined the impact of the addition of genetically engineered and wild-type strains on indigenous bacteria belonging to specific functional groups important in nutrient cycling. For up to 16 days, the densities of total and proteolytic bacteria were significantly higher (P < 0.05) in microcosms inoculated with genetically engineered or wild-type E. carotovora, but by 32 days after inoculation, they had decreased to densities similar to those in control microcosms. Inoculation of genetically engineered or wild-type E. carotovora had no apparent effect on the density of amylolytic and pectolytic bacteria in water and sediment. Genetically engineered and wild-type E. carotovora did not have significantly different effects on the densities of specific functional groups of indigenous bacteria (P > 0.05).  相似文献   

2.
The survival of wild-type and genetically engineered Pseudomonas putida PpY101 that contained a recombinant plasmid pSR134 conferring mercury resistance were monitored in aquatic microcosms. We used lake, river, and spring water samples. The density of genetically engineered and wild-type P. putida decreased rapidly within 5 days (population change rate k -0.87 ~ -1.00 day?1), then moderately after 5 to 28 days (-0.10~, -0.14 day?1). The population change rates of genetically engineered and wild-type P. putida were not significantly different. We studied the important factors affecting the survival of genetically engineered and wild-type P. putida introduced in aquatic microcosms. Visible light exerted an adverse effect on the survival of the two strains. The densities of genetically engineered and wild-type P. putida were almost constant until 7 days after inoculation in natural water filtered with a 0.45-µm membrane filter, or treated with cycloheximide to inhibit the growth of protozoa. These results suggested that protozoan predation was one of the most important factors for the survival of two strains. We examined the impact of the addition of genetically engineered and wild-type P. putida on indigenous bacteria and protozoa. Inoculation of genetically engineered or wild-type P. putida had no apparent effect on the density of indigenous bacteria. The density of protozoa increased in microcosms inoculated with genetically engineered or wild-type P. putida at 3 days after inoculation, but after 5 to 21 days, the density of protozoa decreased to the same level as the control microcosms.  相似文献   

3.
The survival of genetically engineered and wild-type Pseudomonas putida PpY101, that contained a recombinant plasmid pSR134 conferring mercury resistance, were monitored in andosol and sand microcosms. The survival of genetically engineered and wild-type P. putida was not significantly different in andosol. The population change of the two strains was dissimilar in andosol and sand. The survival of genetically engineered and wild-type P. putida strains was affected by the water content of andosol, and increased with the increment of the water content. The impact of the addition of genetically engineered and wild-type P. putida strains on indigenous bacteria and fungi was examined. Inoculation of both strains had no apparent effect on the density of indigenous microorganisms.  相似文献   

4.
Vertical soil microcosms flushed with groundwater were used to study the influence of water movement on survival and transport of a genetically engineered Pseudomonas fluorescens C5t strain through a loamy sand and a loam soil. Transport of cells introduced into the top 1 cm of the vertical soil microcosms was dependent on the flow rate of water and the number of times microcosms were flushed with groundwater. The presence of wheat roots growing downward in the microcosms contributed only slightly to the movement of P. fluorescens C5t cells to lower soil regions of the loamy sand microcosms, but enhanced downward transport in the loam microcosms. Furthermore, the introduced P. fluorescens C5t cells were detected in the effluent water samples even after three flushes of groundwater and 10 days of incubation. As evidenced by a comparison of counts from immunofluorescence and selective plating, nonculturable C5t cells occurred in day 10 soil and percolated water samples, primarily of the loamy sand microcosms. Vertical soil microcosms that use water movement may be useful in studying the survival and transport of genetically engineered bacteria in soil under a variety of conditions prior to field testing.  相似文献   

5.
Vertical soil microcosms flushed with groundwater were used to study the influence of water movement on survival and transport of a genetically engineered Pseudomonas fluorescens C5t strain through a loamy sand and a loam soil. Transport of cells introduced into the top 1 cm of the vertical soil microcosms was dependent on the flow rate of water and the number of times microcosms were flushed with groundwater. The presence of wheat roots growing downward in the microcosms contributed only slightly to the movement of P. fluorescens C5t cells to lower soil regions of the loamy sand microcosms, but enhanced downward transport in the loam microcosms. Furthermore, the introduced P. fluorescens C5t cells were detected in the effluent water samples even after three flushes of groundwater and 10 days of incubation. As evidenced by a comparison of counts from immunofluorescence and selective plating, nonculturable C5t cells occurred in day 10 soil and percolated water samples, primarily of the loamy sand microcosms. Vertical soil microcosms that use water movement may be useful in studying the survival and transport of genetically engineered bacteria in soil under a variety of conditions prior to field testing.  相似文献   

6.
Intact soil-core microcosms were studied to determine their applicability for evaluating the transport, survival, and potential ecosystem effects of genetically engineered microorganisms before they are released into the environment. Soil-core microcosms were planted with wheat and maize seeds and inoculated with Azospirillum lipoferum SpBr17 and SpRG20a Tn5 mutants, respectively. Microcosm leachate, rhizosphere soil, plant endorhizosphere, insects, and xylem exudate were sampled for A. lipoferum Tn5 mutant populations. A. lipoferum Tn5 populations, determined by most-probable-number technique-DNA hybridization, varied from below detection to 106 g of dry root−1 in the rhizosphere, with smaller populations detected in the endorhizosphere. Intact soil-core microcosms were found to maintain some of the complexities of the natural ecosystem and should be particularly useful for initial evaluations of the fate of plant-associated genetically engineered bacteria.  相似文献   

7.
The crown gall biocontrol agent strain K84 and three mutants derived from it, K1026 (Tra deletion mutant of pAgK84), K84 Agr (lacking pAgK84), and K1143 (lacking pAgK84 and pNoc), significantly reduced gall formation caused by two pathogenic strains resistant to agrocin 84 in peach × almond seedlings planted in infested soil. Cocolonization of roots by pathogenic and nonpathogenic strains was observed in these biocontrol experiments under field conditions. In spite of the efficient biocontrol observed, average populations consisting of 102 and 106 pathogenic agrobacteria per g of root were found 8 months after planting. The total numbers of pathogenic bacteria on roots were similar for plants treated with the biocontrol strains and for the untreated plants. Strain K84 and the genetically engineered organism K1026 survived at a level of 106 agrocin 84-producing bacteria per g of root. The population size of genetically engineered strain K1026 was not significantly different than the population size of wild-type strain K84 8 months after root inoculation. Strains K84 and K1026 controlled two pathogens resistant to agrocin 84 without reducing the total number of pathogenic bacteria in the root system. In addition, this study shows that some biological control activity of strain K84 against agrocin 84-resistant pathogens is independent of plasmids pAgK84 and pNoc.  相似文献   

8.
Bacillus megaterium is a potential bioremediation and biocontrol agent. The accumulation of reserve polymers, such as poly-3-hydroxybutyrate (PHB), increases survival of B. megaterium in water. We used wild-type strains of this species and mutant strains deficient in PHB synthesis in soil microcosms for testing the hypothesis that differences in survival capabilities and spore quality between strains is maintained in heterogeneous environments enriched with organic matter. No differences in survival between strains, nor a decrease in bacterial cell numbers were observed in sterile soil microcosms. In non-sterile soil, the total cell number (vegetative cells plus spores) of the PHB wild-type strain was 3.5 times higher than that of the PHB-negative mutant. We suggest that for predictive purposes, validation of survival in a variety of conditions is necessary.  相似文献   

9.
Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere.  相似文献   

10.
Bacterial plasmids and phages encode the synthesis of toxic molecules that inhibit protozoan predation. One such toxic molecule is violacein, a purple pigmented, anti-tumour antibiotic produced by the Gram-negative soil bacterium Chromobacterium violaceum. In the current experiments a range of Escherichia coli K12 strains were genetically engineered to produce violacein and a number of its coloured, biosynthetic intermediates. A bactivorous predatory protozoan isolate, Colpoda sp.A4, was isolated from soil and tested for its ability to ‘graze’ on various violacein producing strains of E. coli K12. A grazing assay was developed based on protozoan “plaque” formation. Using this assay, E. coli K12 strains producing violacein were highly resistant to protozoan predation. However E. coli K12 strains producing violacein intermediates, showed low or no resistance to predation. In separate experiments, when either erythromycin or pentachlorophenol were added to the plaque assay medium, protozoan predation of E. coli K12 was markedly reduced. The inhibitory effects of these two molecules were removed if E. coli K12 strains were genetically engineered to inactivate the toxic molecules. In the case of erythromycin, the E. coli K12 assay strain was engineered to produce an erythromycin inactivating esterase, PlpA. For pentachlorophenol, the E. coli K12 assay strain was engineered to produce a PCP inactivating enzyme pentachlorophenol-4-monooxygenase (PcpB). This study indicates that in environments containing large numbers of protozoa, bacteria which use efflux pumps to remove toxins unchanged from the cell may have an evolutionary advantage over bacteria which enzymatically inactivate toxins.  相似文献   

11.
Laboratory-contained microcosms are important for studying the fate and survival of genetically engineered microorganisms. In this study, we describe a simple aquatic microcosm that utilizes survival chambers in a flowthrough or static renewal system. The model was used to study the survival of genetically engineered and wild-type strains of Escherichia coli and Pseudomonas putida in the lake water environment. Temperature-dependent studies indicated that the genetically engineered microorganisms survived better or at least as well as their wild-type counterparts at 15, 25, and 30 degrees C. The genetic determinants of the genetically engineered microorganisms also remained fairly stable within the host cell under the tested conditions. In the presence of organisms indigenous to lake water, E. coli was eliminated after 20 days, whereas P. putida showed an initial decline but was able to stabilize its population after 5 days. A herbicide, Hydrothol-191, caused a significant decline in numbers of P. putida, but no significant difference was observed between the genetically engineered microorganisms and the wild-type strain. The microcosm described is simple, can be easily adapted to study a variety of environmental variables, and has the advantage that the organisms tested are constantly exposed to test waters that are continuously renewed.  相似文献   

12.
Laboratory-contained microcosms are important for studying the fate and survival of genetically engineered microorganisms. In this study, we describe a simple aquatic microcosm that utilizes survival chambers in a flowthrough or static renewal system. The model was used to study the survival of genetically engineered and wild-type strains of Escherichia coli and Pseudomonas putida in the lake water environment. Temperature-dependent studies indicated that the genetically engineered microorganisms survived better or at least as well as their wild-type counterparts at 15, 25, and 30 degrees C. The genetic determinants of the genetically engineered microorganisms also remained fairly stable within the host cell under the tested conditions. In the presence of organisms indigenous to lake water, E. coli was eliminated after 20 days, whereas P. putida showed an initial decline but was able to stabilize its population after 5 days. A herbicide, Hydrothol-191, caused a significant decline in numbers of P. putida, but no significant difference was observed between the genetically engineered microorganisms and the wild-type strain. The microcosm described is simple, can be easily adapted to study a variety of environmental variables, and has the advantage that the organisms tested are constantly exposed to test waters that are continuously renewed.  相似文献   

13.
Although there are numerous bacteria of the genus Bacillus of great importance for biological control, little is known about their ecology in the soil. We wanted to test illegitimate recombination as a tagging system that would allow us to study selected or genetically engineered Bacillus soil isolates. Strains carrying the plasmid integrated into the chromosome were obtained by growing at a non-permissive temperature after transformation with a plasmid carrying a thermo-sensitive replication origin with selection for erythromycin. A laboratory strain, a commercial strain (Kodiak), and four other soil isolates were generated through this procedure and analysed. In all of these strains the integrated plasmid was maintained in multicopy. The erythromycin resistance gene (ermB) placed on the plasmid was used as a target for polymerase chain reaction (PCR). The tagged strains could be then detected when inoculated into microcosms prepared with non-sterile soil.  相似文献   

14.
A technique of potential use to the biotechnology industry was developed for studying the survival of bacteria in aqueous extracts of soil. The aqueous extracts of soil were placed into test tubes, amended as desired, inoculated with bacteria containing recombinant DNA, and incubated. Most bacteria introduced into filter-sterilized soil extracts were capable of multiplying and maintained populations of 10 E6 to 10 E8 cfu/ml over 13 days. However, bacteria introduced into nonsterile soil extracts at 10 E5 cfu/ml were found to decrease by 2–3 logs over a 13-day period. The soil extract method revealed that recombinant DNA plasmids had no significant effect on survival of thePseudomonas spp. andEscherichia coli strains examined. Extracts from soil provide a convenient and homogeneous milieu for estimating relative competitiveness and documenting survival characteristics of genetically engineered microorganisms. The use of aqueous extracts of soil offer convenience, a means of obtaining homogeneous cell suspensions, and ease of experimental replication over the inoculation of bacteria uniformly into soil.  相似文献   

15.
Abstract In this report we describe the development and construction of a DNA module which encodes bph genes for the metabolism of PCBs and which is capable of stable integration into the chromosome of Gram negative bacteria. Introduction of the bph -module into Pseudomonas putida KT2442, Pseudomonas sp. strain B13 and its genetically engineered derivative B13FR1 expanded the biodegradative ability of these strains to include biphenyl and 4-chlorobiphenyl. The bph operon was stably inherited under laboratory conditions. Behavior of the genetically engineered strains was evaluated under simulated natural habitat conditions in lake sediment microcosms with respect to survival and removal of 4-chlorobiphenyl. The genetically engineered strains persisted under these conditions and were effective in degrading 4-chlorobiphenyl over a five day incubation period.  相似文献   

16.
Genetically engineeredErwinia carotovora persisted significantly longer in thermally perturbed microcosms (35 days) than in nonstressed microcosms (5 days). Decreased pressure of competitors and predators and increased nutrient availability were examined as the most probable reasons for greater vulnerability of perturbed microcosms to colonization by genetically engineered microorganisms (GEMs). Indigenous bacteria that competed with GEMs for the same nutrient sources (protein, cellulose, pectate) were present immediately after perturbation in densities one to two orders of magnitude lower than in unperturbed microcosms, but their populations increased to densities significantly higher than in unperturbed microscosms 10 to 15 days after inoculation. Predators of bacteria (protozoans, cladocerans, nematodes, and rotifers) were present during the experiment in unperturbed microcosms, while dense populations of bacteriovorous nanoflagellates developed in perturbed microcosms. Preemptive inoculation of perturbed microcosms with GEMs did not have a longlasting effect on the recovery of total, proteolytic, cellulolytic, and pectolytic bacteria in perturbed microscosms, indicating the absence of competitive exclusion.  相似文献   

17.
Thirty new Bdellovibrio strains were isolated from an agricultural soil and from the rhizosphere of plants grown in that soil. Using a combined molecular and culture-based approach, we found that the soil bdellovibrios included subpopulations of organisms that differed from rhizosphere bdellovibrios. Thirteen soil and seven common bean rhizosphere Bdellovibrio strains were isolated when Pseudomonas corrugata was used as prey; seven and two soil strains were isolated when Erwinia carotovora subsp. carotovora and Agrobacterium tumefaciens, respectively, were used as prey; and one tomato rhizosphere strain was isolated when A. tumefaciens was used as prey. In soil and in the rhizosphere, depending on the prey cells used, the concentrations of bdellovibrios were between 3 × 102 to 6 × 103 and 2.8 × 102 to 2.3 × 104 PFU g−1. A prey range analysis of five soil and rhizosphere Bdellovibrio isolates performed with 22 substrate species, most of which were plant-pathogenic and plant growth-enhancing bacteria, revealed unique utilization patterns and differences between closely related prey cells. An approximately 830-bp fragment of the 16S rRNA genes of all of the Bdellovibrio strains used was obtained by PCR amplification by using a Bdellovibrio-specific primer combination. Soil and common bean rhizosphere strains produced two and one restriction patterns for this PCR product, respectively. The 16S rRNA genes of three soil isolates and three root-associated isolates were sequenced. One soil isolate belonged to the Bdellovibrio stolpii-Bdellovibrio starrii clade, while all of the other isolates clustered with Bdellovibrio bacteriovorus and formed two distantly related, heterogeneous groups.  相似文献   

18.
Key issues in the deliberate release of genetically-manipulated bacteria   总被引:3,自引:0,他引:3  
Abstract The deliberate release of a genetically engineered bacterium often requires that a complex pathway be travelled through scientific and regulatory questions. It is important to consider the scientific aim of the release and the nature of the modification (deletion or insertion, site of insertion, level of expression) and its likely effect on survival of the organism and the possibility of gene transfer. In Australia, the Genetic Manipulation Advisory Committee assesses applications and makes recommendations about pre-release testing and procedures for conducting field release. Two examples of field release of genetically manipulated bacteria in Australia are considered. Firstly, the commercial product Agrobacterium strain K1026 (‘NoGall’TM), a genetically engineered biological control agent for crown gall disease of stone fruits and roses. Secondly, a lacZY -marked derivative of a strain of Pseudomonas corrugata , that can act as a biological control agent against take-all disease of wheat. Prior to release, bacterial survival and competition was tested in soil microcosms. The distribution and survival of the organism were monitored after field release. Since 1992 the marked bacteria have been recovered only after enrichment. Assessment of risk should consider the survival and spread of the genetically manipulated bacterium and its foreign DNA and the impact of the inoculated bacteria on other (‘non-target’) organisms.  相似文献   

19.
Erwinia carotovora subsp. betavasculorum strains produced a bactericidal antibiotic in vitro that inhibited a wide spectrum of gram-negative and gram-positive bacteria. The optimum temperature for production was 24°C, and the addition of glycerol to culture media enhanced antibiotic production. Antibiotic production by these strains in the infection court of potato was the principal determinant enabling it to gain ascendancy over competing antibiotic-sensitive Erwinia carotovora subsp. carotovora strains. There was a complete correlation between antibiotic production by E. carotovora subsp. betavasculorum in vitro and inhibition of competing E. carotovora subsp. carotovora strains in planta. Inhibition of the latter by the former was apparent after 10 h of incubation in potato tuber wounds. Population densities of sensitive E. carotovora subsp. carotovora strains in mixed potato tuber infections with E. carotovora subsp. betavasculorum were approximately 106-fold lower after 48 h of incubation than in corresponding single sensitive strain infections. E. carotovora subsp. carotovora were not inhibited in tuber infections that were incubated anaerobically. This correlated with the absence of antibiotic production during anaerobic incubation in vitro. Antibiotic-resistant strains of E. carotovora subsp. carotovora were not inhibited in planta or in vitro by E. carotovora subsp. betavasculorum. Moreover, isogenic antibiotic-negative (Ant) mutant E. carotovora subsp. betavasculorum strains were not inhibitory to sensitive E. carotovora subsp. carotovora strains in tuber infections.  相似文献   

20.
For study of gene transfer and expression in a large variety of soil bacteria in situ, a gene-promoter cassette was constructed and inserted into an expression vector that allowed expression and maintenance in a wide host range. The hybrid replicon was transformed into a mobilizer strain that transferred its DNA to other Gram-negative bacteria at very high rates. This genetically engineered microorganism (GEM) was introduced into nonsterile soil microcosms. Plasmid transfer from the introduced GEM to members of the native soil flora was observed in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号