首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanosensitive channel of small conductance, MscS, is one of the most extensively studied MS channels to date. Past and present research involves the discovery of its physiological role as an emergency valve in prokaryotes up to detailed investigations of its conductive properties and gating mechanism. In this review, we summarize the findings on its structure and function obtained by experimental and theoretical approaches. A special focus is given to its pharmacology, since various compounds have been shown to affect the activity of this channel. These compounds have particularly been helpful for understanding the interaction of MscS with the lipid bilayer, as well as recognizing the potential of this channel as a target for novel types of antibiotics.  相似文献   

2.
3.
The major structural features of the Escherichia coli MscS mechanosensitive channel protein have been explored using alkaline phosphatase (PhoA) fusions, precise deletions and site-directed mutations. PhoA protein fusion data, combined with the positive-inside rule, strongly support a model in which MscS crosses the membrane three times, adopting an N(out)-C(in) configuration. Deletion data suggest that the C-terminal domain of the protein is essential for the stability of the MscS channel, whereas the protein will tolerate small deletions at the N-terminus. Four mutants that exhibit either gain-of-function (GOF) or loss-of-function have been identified: a double mutation I48D/S49P inactivates MscS, whereas the MscS mutants T93R, A102P and L109S cause a strong GOF phenotype. The similarity of MscS to the last two domains of MscK (formerly KefA) is reinforced by the demonstration that expression of a truncated MscK protein can substitute for MscL and MscS in downshock survival assays. The data derived from studies of the organization, conservation and the influence of mutations provide significant insights into the structure of the MscS channel.  相似文献   

4.
5.
The bacterial mechanosensitive channel MscS protects the bacteria from rupture on hypoosmotic shock. MscS is composed of a transmembrane domain with an ion permeation pore and a large cytoplasmic vestibule that undergoes significant conformational changes on gating. In this study, we investigated whether specific residues in the transmembrane and cytoplasmic domains of MscS influence each other during gating. When Asp-62, a negatively charged residue located in the loop that connects the first and second transmembrane helices, was replaced with either a neutral (Cys or Asn) or basic (Arg) amino acid, increases in both the gating threshold and inactivation rate were observed. Similar effects were observed after neutralization or reversal of the charge of either Arg-128 or Arg-131, which are both located near Asp-62 on the upper surface of the cytoplasmic domain. Interestingly, the effects of replacing Asp-62 with arginine were complemented by reversing the charge of Arg-131. Complementation was not observed after simultaneous neutralization of the charge of these residues. These findings suggest that the cytoplasmic domain of MscS affects both the mechanosensitive gating and the channel inactivation rate through the electrostatic interaction between Asp-62 and Arg-131.  相似文献   

6.
The mechanosensitive channel of small conductance (MscS) is a bacterial mechanosensitive channel that opens in response to rapid hypoosmotic stress. Since MscS can be opened solely by membrane stretch without help from any accessory protein, the lipid-protein interface must play a crucial role in sensing membrane tension. In this study, the hydrophobic residues in the lipid-protein interface were substituted one by one with a hydrophilic amino acid, asparagine, to modify the interaction between the protein and the lipid. Function of the mutant MscSs was examined by patch-clamp and hypoosmotic shock experiments. An increase in the gating threshold and a decrease in the viability on hypoosmotic shock were observed when the hydrophobic residues near either end of the first or the second transmembrane helix (TM1 or TM2) were replaced with asparagine. This observation indicates that the lipid-protein interaction at the ends of both helices (TM1 and TM2) is essential to MscS function.  相似文献   

7.
We have investigated the effect of high hydrostatic pressure on MscS, the bacterial mechanosensitive channel of small conductance. Pressure affected channel kinetics but not conductance. At negative pipette voltages (corresponding to membrane depolarization in the inside-out patch configuration used in our experiments) the channel exhibited a reversible reduction in activity with increasing hydrostatic pressure between 0 and 900 atm (90 MPa) at 23°C. The reduced activity was characterized by a significant reduction in the channel opening probability resulting from a shortening of the channel openings with increasing pressure. Thus high hydrostatic pressure generally favoured channel closing. Cooling the patch by approximately 10°C, intended to order the bilayer component of the patch by an amount similar to that caused by 50 MPa at 23°C, had relatively little effect. This implies that pressure does not affect channel kinetics via bilayer order. Accordingly we postulate that lateral compression of the bilayer, under high hydrostatic pressure, is responsible. These observations also have implications for our understanding of the adaptation of mechanosensitive channels in deep-sea bacteria.A Proceeding of the 28th Annual Meeting of the Australian Society for Biophysics.  相似文献   

8.
The dynamics of confined water in capillaries and nanotubes suggests that gating of ion channels may involve not only changes of the pore geometry, but also transitions between water-filled and empty states in certain locations. The recently solved heptameric structure of the small mechanosensitive channel of Escherichia coli, MscS, has revealed a relatively wide (7-15 A) yet highly hydrophobic transmembrane pore. Continuum estimations based on the properties of pore surface suggest low conductance and a thermodynamic possibility of dewetting. To test the predictions we performed molecular dynamics simulations of MscS filled with flexible TIP3P water. Irrespective to the initial conditions, several independent 6-ns simulations converged to the same stable state with the pore water-filled in the wider part, but predominantly empty in the narrow hydrophobic part, displaying intermittent vapor-liquid transitions. The polar gain-of-function substitution L109S in the constriction resulted in a stable hydration of the entire pore. Steered passages of Cl(-) ions through the narrow part of the pore consistently produced partial ion dehydration and required a force of 200-400 pN to overcome an estimated barrier of 10-20 kcal/mole, implying negligibly low conductance. We conclude that the crystal structure of MscS does not represent an open state. We infer that MscS gate, which is similar to that of the nicotinic ACh receptor, involves a vapor-lock mechanism where limited changes of geometry or surface polarity can locally switch the regime between water-filled (conducting) and empty (nonconducting) states.  相似文献   

9.
In bacterial and animal systems, mechanosensitive (MS) ion channels are thought to mediate the perception of pressure, touch, and sound [1-3]. Although plants respond to a wide variety of mechanical stimuli, and although many mechanosensitive channel activities have been characterized in plant membranes by the patch-clamp method, the molecular nature of mechanoperception in plant systems has remained elusive [4]. Likely candidates are relatives of MscS (Mechanosensitive channel of small conductance), a well-characterized MS channel that serves to protect E. coli from osmotic shock [5]. Ten MscS-Like (MSL) proteins are found in the genome of the model flowering plant Arabidopsis thaliana[4, 6, 7]. MSL2 and MSL3, along with MSC1, a MscS family member from green algae, are implicated in the control of organelle morphology [8, 9]. Here, we characterize MSL9 and MSL10, two MSL proteins found in the plasma membrane of root cells. We use a combined genetic and electrophysiological approach to show that MSL9 and MSL10, along with three other members of the MSL family, are required for MS channel activities detected in protoplasts derived from root cells. This is the first molecular identification and characterization of MS channels in plant membranes.  相似文献   

10.
Cells actively regulate the macromolecular excluded volume of the cytoplasm to maintain the reciprocal fraction of free aqueous solution that is optimal for intracellular processes. However, the mechanisms whereby cells sense this critical parameter remain unclear. The mechanosensitive channel of small conductance (MscS channel), which is the major regulator of turgor in bacteria, mediates efflux of small osmolytes in response to increased membrane tension. At moderate sustained tensions produced by a decrease in external osmolarity, MscS undergoes slow adaptive inactivation; however, it inactivates abruptly in the presence of cytoplasmic crowding agents. To understand the mechanism underlying this rapid inactivation, we combined extrapolated and equilibrium molecular dynamics simulations with electrophysiological analyses of MscS mutants to explore possible transitions of MscS and generated models of the resting and inactivated states. Our models suggest that the coupling of the gate formed by TM3 helices to the peripheral TM1–TM2 pairs depends on the axial position of the core TM3 barrel relative to the TM1–TM2 shaft and the state of the associated hollow cytoplasmic domain (“cage”). They also indicate that the tension-driven inactivation transition separates the gate from the peripheral helices and promotes kinks in TM3s at G113 and that this conformation is stabilized by association of the TM3b segment with the β domain of the cage. We found that mutations destabilizing the TM3b–β interactions preclude inactivation and make the channel insensitive to crowding agents and voltage; mutations that strengthen this association result in a stable closed state and silent inactivation. Steered simulations showed that pressure exerted on the cage bottom in the inactivated state reduces the volume of the cage in the cytoplasm and at the same time increases the footprint of the transmembrane domain in the membrane, implying coupled sensitivity to both membrane tension and crowding pressure. The cage, therefore, provides feedback on the increasing crowding that disengages the gate and prevents excessive draining and condensation of the cytoplasm. We discuss the structural mechanics of cells surrounded by an elastic cell wall where this MscS-specific feedback mechanism may be necessary.  相似文献   

11.
Mechanosensitive channels are a class of ubiquitous membrane proteins gated by mechanical strain in the cellular membrane. MscS, the mechanosensitive channel of small conductance, is found in the inner membrane of Escherichia coli and its crystallographic structure in an open form has been recently solved. By means of molecular dynamics simulations we studied the stability of the channel conformation suggested by crystallography in a fully solvated lipid (POPC) bilayer, the combined system encompassing 224,340 atoms. When restraining the backbone of the protein, the channel remained in the open form and the simulation revealed intermittent permeation of water molecules through the channel. Abolishing the restraints under constant pressure conditions led to spontaneous closure of the transmembrane channel, whereas abolishing the restraints when surface tension (20 dyn/cm) was applied led to channel widening. The large balloon-shaped cytoplasmic domain of MscS exhibited spontaneous diffusion of ions through its side openings. Interaction between the transmembrane domain and the cytoplasmic domain of MscS was observed and involved formation of salt bridges between residues Asp62 and Arg128; this interaction may be essential for the gating of MscS. K+ and Cl- ions showed distinctively different distributions in and around the channel.  相似文献   

12.
We have successfully expressed and characterized mechanosensitive channel of small conductance (MscS) from Escherichia coli in oocytes of the African clawed frog, Xenopus laevis. MscS expressed in oocytes has the same single-channel conductance and voltage dependence as the channel in its native environment. Two hallmarks of MscS activity, the presence of conducting substates at high potentials and reversible adaptation to a sustained stimulus, are also exhibited by oocyte-expressed MscS. In addition to its ease of use, the oocyte system allows the user to work with relatively large patches, which could be an advantage for the visualization of membrane deformation. Furthermore, MscS can now be compared directly to its eukaryotic homologues or to other mechanosensitive channels that are not easily studied in E. coli.  相似文献   

13.
The crystal structure of an open form of the Escherichia coli MscS mechanosensitive channel was recently solved. However, the conformation of the closed state and the gating transition remain uncharacterized. The pore-lining transmembrane helix contains a conserved glycine- and alanine-rich motif that forms a helix-helix interface. We show that introducing 'knobs' on the smooth glycine face by replacing glycine with alanine, and substituting conserved alanines with larger residues, increases the pressure required for gating. Creation of a glycine-glycine interface lowers activation pressure. The importance of residues Gly104, Ala106 and Gly108, which flank the hydrophobic seal, is demonstrated. A new structural model is proposed for the closed-to-open transition that involves rotation and tilt of the pore-lining helices. Introduction of glycine at Ala106 validated this model by acting as a powerful suppressor of defects seen with mutations at Gly104 and Gly108.  相似文献   

14.
Schumann U  Edwards MD  Li C  Booth IR 《FEBS letters》2004,572(1-3):233-237
The Escherichia coli MscS mechanosensitive channel protein has a distinct domain structure that terminates in a conserved seven-strand beta barrel. This distinctive feature suggested it could be a critical determinant of channel stability and activity. Measurements on a protein deleted for the base of the vestibule and the beta barrel (residues 266-286) suggested that the modified channel had reduced activity. However, induction of the mutant protein resulted in membrane protein accumulation equivalent to wild type and a physiologically functional channel. In patch clamp analysis the activity profile was similar to wild type but reduced numbers of channel were seen per patch, suggesting reduced assembly or stability of the mutant protein. The mutant channel exhibited a subtle change in character - channels did not re-open after full desensitization. Thus the immediate carboxy-terminus (residues 266-286) is not essential for MscS gating but improves stability and activity and is required for recovery of channel activity after desensitization.  相似文献   

15.
[目的]细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个独特的开放特征是具有失活特性,即在持续的机械刺激条件下,MscS从开放状态进入一种非离子通透的失活状态,从而避免因通道持续开放引起大量内容物流失导致细菌死亡。该研究的目的是鉴定影响MscS失活的关键氨基酸,为靶向MscS的药物设计提供思路。[方法]采用分子克隆方法制备MscS Cyto-helix(P166−I170)半胱氨酸突变体,利用巯基化合物MTSET+结合半胱氨酸从而对其侧链基团进行修饰,并通过低渗刺激实验,检测表达MscS半胱氨酸突变体的大肠杆菌分别在无或有MTSET+处理下,低渗刺激诱发通道开放后的存活率筛选显著影响通道功能的突变体。利用电生理膜片钳方法检测突变体在MTSET+处理前后通道失活特性的变化,结合定点突变手段进一步探讨失活机制。[结果]MTSET+处理导致表达半胱氨酸突变体G168C-MscS的大肠杆菌在低渗刺激后存活率极大降低;G168C- MscS在结合MTSET+后失去失活特性,保持持续开放,是导致细菌胞内内容物大量流失并死亡的重要原因;酪氨酸突变G168Y-MscS、亮氨酸突变G168L-MscS和赖氨酸突变G168K-MscS的失活特性与野生型WT-MscS一致,而天冬氨酸突变G168D、缬氨酸突变G168V和异亮氨酸突变G168I的失活速率显著降低,尤其是G168I-MscS失去失活特性,表明MscS 168位点是影响通道失活的关键位点,并且通道失活特性与该位点氨基酸侧链基团的大小及电荷性质相关。[结论]G168位点甘氨酸是影响MscS通道失活的关键氨基酸。  相似文献   

16.
Heptameric YggB is a mechanosensitive ion channel (MscS) from the inner membrane of Escherichia coli. We demonstrate, using the patch clamp technique, that cross-linking of the YggB C termini led to irreversible inhibition of the channel activities. Application of Ni(2+) to the YggB-His(6) channels with the hexahistidine tags added to the ends of their C termini also resulted in a marked but reversible decrease of activities. Western blot revealed that YggB-His(6) oligomers are more stable in the presence of Ni(2+), providing evidence that Ni(2+) is coordinated between C termini from different subunits of the channel. Intersubunit coordination of Ni(2+) affecting channel activities occurred in the channel closed conformation and not in the open state. This may suggest that the C termini move apart upon channel opening and are involved in the channel activation. We propose that the as yet undefined C-terminal region may form a cytoplasmic gate of the channel. The results are discussed and interpreted based on the recently released quaternary structure of the channel.  相似文献   

17.
Tryptophan (Trp) residues play important roles in many proteins. In particular they are enriched in protein surfaces involved in protein docking and are often found in membrane proteins close to the lipid head groups. However, they are usually absent from the membrane domains of mechanosensitive channels. Three Trp residues occur naturally in the Escherichia coli MscS (MscS-Ec) protein: W16 lies in the periplasm, immediately before the first transmembrane span (TM1), whereas W240 and W251 lie at the subunit interfaces that create the cytoplasmic vestibule portals. The role of these residues in MscS function and stability were investigated using site-directed mutagenesis. Functional channels with altered properties were created when any of the Trp residues were replaced by another amino acid, with the greatest retention of function associated with phenylalanine (Phe) substitutions. Analysis of the fluorescence properties of purified mutant MscS proteins containing single Trp residues revealed that W16 and W251 are relatively inaccessible, whereas W240 is accessible to quenching agents. The data point to a significant role for W16 in the gating of MscS, and an essential role for W240 in MscS oligomer stability.  相似文献   

18.
2,2,2-Trifluoroethanol (TFE), a low-dielectric solvent, has recently been used as a promising tool to probe the strength of intersubunit interactions in membrane proteins. An analysis of inner membrane proteins of Escherichia coli has identified several SDS-resistant protein complexes that separate into subunits upon exposure to TFE. One of these was the homo-heptameric stretch-activated mechanosensitive channel of small conductance (MscS), a ubiquitous component of the bacterial turgor-regulation system. Here we show that a substantial fraction of MscS retains its oligomeric state in cold lithium-dodecyl-sulfate gel electrophoresis. Exposure of MscS complexes to 10-15 vol % TFE in native membranes or nonionic detergent micelles before lithium-dodecyl-sulfate electrophoresis results in a complete dissociation into monomers, suggesting that at these concentrations TFE by itself disrupts or critically compromises intersubunit interactions. Patch-clamp analysis of giant E. coli spheroplasts expressing MscS shows that exposure to TFE in lower concentrations (0.5-5.0 vol %) causes leftward shifts of the dose-response curves when applied extracellularly, and rightward shifts when added from the cytoplasmic side. In the latter case, TFE increases the rate of tension-dependent inactivation and lengthens the process of recovery to the resting state. MscS responses to pressure ramps of different speeds indicate that in the presence of TFE most channels reside in the resting state and only at tensions near the activation threshold does TFE dramatically speed up inactivation. The effect of TFE is reversible as normal channel activity returns 15-30 min after a TFE washout. We interpret the observed midpoint shifts in terms of asymmetric partitioning of TFE into the membrane and distortion of the bilayer lateral pressure profile. We also relate the increased rate of inactivation and subunit separation with the capacity of TFE to perturb buried interhelical contacts in proteins and discuss these effects in the framework of the proposed gating mechanism of MscS.  相似文献   

19.
MscS is a bacterial mechanosensitive channel that shows voltage dependence. The crystal structure of MscS revealed that the channel is a homoheptamer with a large chamber on the intracellular site. Our previous experiments indicated that the cytoplasmic chamber of the channel is not a rigid structure and changes its conformation upon the channel activation. In this study, we have applied various sized cosolvents that are excluded from protein surfaces. It is well known that such cosolvents induce compaction of proteins and prevent thermal fluctuations. It is also known that they shift channel equilibrium to the state of lower volume. We have found that large cosolvents that cannot enter the channel interior accelerate channel inactivation when applied from the cytoplasmic side, but they slow down inactivation when applied from the extracellular side. We have also found that small cosolvents that can enter the channel cytoplasmic chamber prevent the channel from opening, unlike the large ones. These data support our idea that the channel cytoplasmic chamber shrinks upon inactivation but also give new clues about conformational changes of the channel upon transitions between its functional states.  相似文献   

20.
The small mechanosensitive channel, MscS, is a part of the turgor-driven solute efflux system that protects bacteria from lysis in the event of osmotic downshift. It has been identified in Escherichia coli as a product of the orphan yggB gene, now called mscS (Levina et al., 1999, EMBO J. 18:1730). Here I show that that the isolated 31-kDa MscS protein is sufficient to form a functional mechanosensitive channel gated directly by tension in the lipid bilayer. MscS-6His complexes purified in the presence of octylglucoside and lipids migrate in a high-resolution gel-filtration column as particles of approximately 200 kDa. Consistent with that, the protein cross-linking patterns predict a hexamer. The channel reconstituted in soybean asolectin liposomes was activated by pressures of 20-60 mm Hg and displayed the same asymmetric I-V curve and slight anionic preference as in situ. At the same time, the single-channel conductance is proportional to the buffer conductivity in a wide range of salt concentrations. The rate of channel activation in response to increasing pressure gradient across the patch was slower than the rate of closure in response to decreasing steps of pressure gradient. Therefore, the open probability curves were recorded with descending series of pressures. Determination of the curvature of patches by video imaging permitted measurements of the channel activity as a function of membrane tension (gamma). Po(gamma) curves had the midpoint at 5.5 +/- 0.1 dyne/cm and gave estimates for the energy of opening DeltaG = 11.4 +/- 0.5 kT, and the transition-related area change DeltaA = 8.4 +/- 0.4 nm(2) when fitted with a two-state Boltzmann model. The correspondence between channel properties in the native and reconstituted systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号