首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to determine whether the Na+-dependent Pi transport system of Ehrlich ascites tumor cells exhibits specificity for H2PO4- or HPO4(-2), Pi fluxes were determined by measuring 32Pi-Pi self-exchange. Three experimental approaches were employed. First, the effect of pH on steady-state Pi transport at 0.5 and 5 mM was studied. Second, the relationship between Pi transport and Pi concentration (0.25-9.2 mM) at pH 5.6 and 7.9 was determined. Third, the dependence of Pi transport on [H2PO4-] (0.05-4.2 mM) at constant [HPO4(-2)] (0.5 mM), and the converse, [HPO4(-2)] (0.06-4.5 mM) at constant [H2PO4-] (0.5 mM), was evaluated. Ks (apparent half-saturation constant) and Jmax (maximal transport rate) were calculated by two methods: weighted linear regression (WLR) and a nonparametric procedure. The dependence of Pi flux on pH indicates that optimum transport occurs at pH 6.9. Pi transport decreases as pH is reduced when extracellular Pi is either 0.5 or 5 mM. However, at pH 7.9, Pi flux is reduced only in 0.5 mM Pi. At pH 5.6, H2PO4- comprises 93% of the total Pi present, and the calculated Ks is 0.055 +/- 0.026 mM (WLR). This is the same as the Ks determined from the initial phase of the flux vs. [H2PO4-] relationship (0.056 +/- 0.020 mM). However, at pH 7.9 (where 94% of Pi is HPO4(-2)), the measured Ks is 0.58 +/- 0.11 mM (WLR), which is ten times higher than at pH 5.6. This value is also five times greater than the Ks calculated from the flux vs. [HPO4(-20)] curve (0.106 +/- 0.16 mM). Kinetic parameters calculated by the nonparametric method, though somewhat different, gave similar relative results. Taken together, these results support two conclusions: (1) H2PO4- is the substrate for the Na+-dependent Pi transport system of the Ehrlich cell, and (2) H+ can inhibit Pi transport.  相似文献   

2.
The extra uptake of Ca2+ by vesicles of sarcoplasmic reticulum (SR) observed in the presence of Pi, attributable to transport of Pi by the Pi-transporter, has been studied. It has been shown that the Pi transporter is stimulated by ATP. Single channel conductance measurements have shown that the Cl- channel in the SR membrane is impermeable to Pi. It is suggested that the transporter could be an ion antiporter system. Studies of uptake as a function of pH and Mg2+ concentration suggest that transport of MgHPO4 and H2PO-4 are faster than transport of HPO2-4. For oxalate and pyrophosphate, Mg2+ binding inhibits transport. It is suggested that protonation of lysine residue(s) at the anion binding site increase the rate of transport.  相似文献   

3.
Molecular dynamics simulations have been performed on solvated G-actin bound to ADP and ATP, starting with the crystal structure of the actin-DNase 1 complex, including a Ca2+ or Mg2+ ion at the high-affinity divalent cation-binding site. Water molecules have been found to enter the nucleotide-binding site (phosphate vicinity) along two pathways, from the side where the nucleotide base is exposed to water, as well as from the opposite side. The water channels suggest a "back-door" mechanism for ATP hydrolysis in which the phosphate is released to a side opposite that of nucleotide binding and unbinding. The simulations also reveal a propensity of G-actin to alter its crystallographic structure toward the filamentous structure. Domain movement closes the nucleotide cleft, the movement being more pronounced for bound Mg2+. The conformational change is interpreted as a response of the system to missing water molecules in the crystal structure. The structures arising in the simulations, classified according to nucleotide cleft separation and radius of gyration of the protein, fall into two distinct clusters: a cluster of states that are similar to the G-actin crystal structure, and a cluster of states with small cleft separation and with the subdomain 3/4 loop 264-273 detached from the protein. The latter states resemble the putative filamentous structure of actin, in which the loop connects the two strands of the actin filament.  相似文献   

4.
The influence of phosphite (H2PO3-) on the response of Saccharomyces cerevisiae to orthophosphate (HPO4(2-); Pi) starvation was assessed. Phosphate-repressible acid phosphatase (rAPase) derepression and cell development were abolished when phosphate-sufficient (+Pi) yeast were subcultured into phosphate-deficient (-Pi) media containing 0.1 mM phosphite. By contrast, treatment with 0.1 mM phosphite exerted no influence on rAPase activity or growth of +Pi cells. 31P NMR spectroscopy revealed that phosphite is assimilated and concentrated by yeast cultured with 0.1 mM phosphite, and that the levels of sugar phosphates, pyrophosphate, and particularly polyphosphate were significantly reduced in the phosphite-treated -Pi cells. Examination of phosphite's effects on two PHO regulon mutants that constitutively express rAPase indicated that (i) a potential target for phosphite's action in -Pi yeast is Pho84 (plasmalemma high-affinity Pi transporter and component of a putative phosphate sensor-complex), and that (ii) an additional mechanism exists to control rAPase expression that is independent of Pho85 (cyclin-dependent protein kinase). Marked accumulation of polyphosphate in the delta pho85 mutant suggested that Pho85 contributes to the control of polyphosphate metabolism. Results are consistent with the hypothesis that phosphite obstructs the signaling pathway by which S. cerevisiae perceives and responds to phosphate deprivation at the molecular level.  相似文献   

5.
The hydrolysis of ATP associated with actin and profilin-actin polymerization is pivotal in cell motility. It is at the origin of treadmilling of actin filaments and controls their dynamics and mechanical properties, as well as their interactions with regulatory proteins. The slow release of inorganic phosphate (Pi) that follows rapid cleavage of ATP gamma phosphate is linked to an increase in the rate of filament disassembly. The mechanism of Pi release in actin filaments has remained elusive for over 20 years. Here, we developed a microfluidic setup to accurately monitor the depolymerization of individual filaments and determine their local ADP-Pi content. We demonstrate that Pi release in the filament is not a vectorial but a random process with a half-time of 102 seconds, irrespective of whether the filament is assembled from actin or profilin-actin. Pi release from the depolymerizing barbed end is faster (half-time of 0.39 seconds) and further accelerated by profilin. Profilin accelerates the depolymerization of both ADP- and ADP-Pi-F-actin. Altogether, our data show that during elongation from profilin-actin, the dissociation of profilin from the growing barbed end is not coupled to Pi release or to ATP cleavage on the terminal subunit. These results emphasize the potential of microfluidics in elucidating actin regulation at the scale of individual filaments.  相似文献   

6.
His(73), has been proposed to regulate the release of P(i) from the interior of actin following polymerization-dependent hydrolysis of bound ATP. Although it is a 3-methylhistidine in the vast majority of actins, His(73) is unmethylated in S. cerevisiae actin. We mutated His(73) in yeast actin to Arg, Lys, Ala, Gln, and Glu and detected no altered phenotypes associated with the mutations in vivo. However, they significantly affect actin function in vitro. Substitution of the more basic residues resulted in enhanced thermal stability, decreased rate of nucleotide exchange, and decreased susceptibility to controlled proteolysis relative to wild-type actin. The opposite effects are observed with the neutral and anionic substitutions. All mutations reduced the rate of polymerization. Molecular dynamics simulations predict a new conformation for the His(73) imidazole in the absence of a methyl group. It also predicts that Arg(73) tightens and stabilizes the actin and that Glu(73) causes a rearrangement of the bottom of actin's interdomain cleft leading possibly to our observed destabilization of actin. Considering the exterior location of His(73), this work indicates a surprisingly important role for the residue as a major structural determinant of actin and provides a clue to the impact caused by methylation of His(73).  相似文献   

7.
M E Marsh 《Biochemistry》1989,28(1):346-352
The concomitant binding of calcium and inorganic phosphate ions by the highly phosphorylated rat dentin phosphophoryn (HP) was measured in the pH range of 7.4-8.5 by an ultrafiltration procedure. HP binds almost exclusively the triply charged PO4(3-) ion, and for each PO4(3-) ion bound, the protein binds about 1.5 additional Ca2+ ions. Therefore, the protein-mineral ion complex can be described as a protein with two different ligands, Ca2+ ions and calcium phosphate clusters having a stoichiometry of about Ca1.5PO4. Empirically the binding of calcium and phosphate can best be described as a function of a neutral ion activity product in which 2.5-10% of the phosphate is HPO4(2-). The stoichiometry of the bound clusters is similar to that of amorphous calcium phosphate, and it is clear that the protein does not sequester crystal embryos of octacalcium phosphate or hydroxyapatite. The protein-mineral ion complex is amorphous by electron diffraction analysis and does not catalyze the formation of a crystalline phase when aged in contact with its solution. About 15% of the bound phosphate is buried in protected domains, and it is stable with respect to dissociation for extended periods in phosphate-free calcium buffers. The buried mineral maintains the protein in an aggregated state even at calcium ion concentrations which are too low for the aggregation of unmineralized HP. In vivo HP should be ineffective in the nucleation of a crystalline mineral phase, if it is secreted in a mineralized aggregated state similar to casein and the bivalve phosphoprotein.  相似文献   

8.
A conventional five-step chemo-mechanical cycle of the myosin–actin ATPase reaction, which implies myosin detachment from actin upon release of hydrolysis products (ADP and phosphate, Pi) and binding of a new ATP molecule, is able to fit the [Pi] dependence of the force and number of myosin motors during isometric contraction of skeletal muscle. However, this scheme is not able to explain why the isometric ATPase rate of fast skeletal muscle is decreased by an increase in [Pi] much less than the number of motors. The question can be solved assuming the presence of a branch in the cycle: in isometric contraction, when the force generation process by the myosin motor is biased at the start of the working stroke, the motor can detach at an early stage of the ATPase cycle, with Pi still bound to its catalytic site, and then rapidly release the hydrolysis products and bind another ATP. In this way, the model predicts that in fast skeletal muscle the energetic cost of isometric contraction increases with [Pi]. The large dissociation constant of the product release in the branched pathway allows the isometric myosin–actin reaction to fit the equilibrium constant of the ATPase.  相似文献   

9.
Quantitative predictions of steady-state muscle properties from the strain-dependent cross-bridge for muscle are presented. With a stiffness of 5.4 x 10(-4) N/m per head, a throw distance of 11 nm, and three allowed actin sites/head, isometric properties and their dependence on phosphate and nucleotide levels are well described if the tension-generating step occurs before phosphate release. At very low ATP levels, rigorlike states with negative strain are predicted. The rate-limiting step for cycling and ATP consumption is strain-blocked ADP release for isometric and slowly shortening muscle. Under rapid shortening, ATP hydrolysis on detached heads is the rate-limiting step, and the ratio of bound ATP to bound ADP.Pi increases by a factor of 7. At large positive strains, bound heads must be forcibly detached from actin to account for tension in rapid extension, but forced detachment in shortening has no effect without destroying isometric attached states. Strain-blocked phosphate release as proposed produces modest inhibition of the ATPase rate under rapid shortening, sufficient to give a maximum for one actin site per helix turn. Alternative cross-bridge models are discussed in the light of these predictions.  相似文献   

10.
In actin from many species H73 is methylated, but the function of this rare post-translational modification is unknown. Although not within bonding distance, it is located close to the gamma-phosphate of the actin-bound ATP. In most crystal structures of actin, the delta1-nitrogen of the methylated H73 forms a hydrogen bond with the carbonyl of G158. This hydrogen bond spans the gap separating subdomains 2 and 4, thereby contributing to the forces that close the interdomain cleft around the ATP polyphosphate tail. A second hydrogen bond stabilizing interdomain closure exists between R183 and Y69. In the closed-to-open transition in beta-actin, both of these hydrogen bonds are broken as the phosphate tail is exposed to solvent.Here we describe the isolation and characterization of a mutant beta-actin (H73A) expressed in the yeast Saccharomyces cerevisiae. The properties of the mutant are compared to those of wild-type beta-actin, also expressed in yeast. Yeast does not have the methyl transferase necessary to methylate recombinant beta-actin. Thus, the polymerization properties of yeast-expressed wild-type beta-actin can be compared with normally methylated beta-actin isolated from calf thymus. Since earlier studies of the actin ATPase almost invariably employed rabbit skeletal alpha-actin, this isoform was included in these comparative studies on the polymerization, ATP hydrolysis, and phosphate release of actin.It was found that H73A-actin exchanged ATP at an increased rate, and was less stable than yeast-expressed wild-type actin, indicating that the mutation affects the spatial relationship between the two domains of actin which embrace the nucleotide. At physiological concentrations of Mg(2+), the kinetics of ATP hydrolysis of the mutant actin were unaffected, but polymer formation was delayed. The comparison of methylated and unmethylated beta-actin revealed that in the absence of a methyl group on H73, ATP hydrolysis and phosphate release occurred prior to, and seemingly independently of, filament formation. The comparison of beta and alpha-actin revealed differences in the timing and relative rates of ATP hydrolysis and P(i)-release.  相似文献   

11.
The exchange of anions across the erythrocyte membrane has been studied using 31P nuclear magnetic resonance (NMR) to monitor inorganic phosphate influx and 35Cl NMR to monitor chloride ion efflux. The 31P NMR resonances for intracellular Pi and extracellular Pi could be observed separately by adjusting the initial extracellular pH to 6.4, while the intracellular pH was 7.3. The 35Cl NMR resonance for intracellular Cl- was so broad as to be virtually undetectable (line width greater than 200 Hz), while that of extracellular Cl-is relatively narrow (line width of about 30 Hz). The transports of Pi and Cl-were both totally inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate, a potent inhibitor of the band 3 protein. Since the 31P resonance of Pi varies with pH, intra- and extracellular pH changes could also be determined during anion transport. The extracellular pH rose and intracellular pH fell during anion transport, consistent with the protonated monoanionic H2PO4-form of Pi being transported into the erythrocyte rather than the deprotonated dianionic HPO24-form. The rates of Cl-efflux and Pi influx were determined quantitatively and were found to be in close agreement with values determined by isotope measurements. The Cl-efflux was found to coincide with the influx of the monoanionic H2PO4-form of Pi.  相似文献   

12.
The extent of oxygen exchange between phosphate and water has been measured for the calcium-regulated magnesium-dependent ATPase activity of chemically skinned fibers from rabbit skeletal muscle. The oxygen exchange was determined for isometrically held fibers by measuring with a mass spectrometer the distribution of 18O atoms in the product inorganic phosphate when ATP hydrolysis was carried out in H2(18)O. The extent of exchange was much greater in relaxed muscle (free Ca2+ less than 10(-8) M) than in calcium-activated muscle (free Ca2+ approximately equal to 3 X 10(-5) M). Activated fibers had an ATPase activity at least 30-fold greater than the relaxed fibers. These results correlate well with the extents of oxygen exchange accompanying magnesium-dependent myosin and unregulated actomyosin ATPase activities, respectively. In relaxed fibers, comparison of the amount of exchange with the ATPase activity suggests that the rate constant for the reformation of myosin-bound ATP from the myosin products complex is about 10 s-1 at 20 degrees C and pH 7.1. In each experiment the distribution of 18O in the Pi formed was incompatible with a single pathway for ATP hydrolysis. In the case of the calcium-activated fibers, the multiple pathways for ATP hydrolysis appeared to be an intrinsic property of the actomyosin ATPase in the fiber. These results indicate that in muscle fibers, as in isolated actomyosin, cleavage of protein-bound ATP is readily reversible and that association of the myosin products complex with actin promotes Pi release.  相似文献   

13.
Our previous work (Carlier, M.-F., and Pantaloni, D. (1986) Biochemistry 25, 7789-7792) had shown that F-ADP-Pi-actin is a major intermediate in ATP-actin polymerization, due to the slow rate of Pi release following ATP cleavage on filaments. To understand the mechanism of ATP-actin polymerization, we have prepared F-ADP-Pi-actin and characterized its kinetic parameters. 32Pi binds to F-ADP-actin with a stoichiometry of 1 mol/mol of F-actin subunit and an equilibrium dissociation constant Kpi of 1.5 mM at pH 7.0 Kpi increases with pH, indicating that the H2PO-4 species binds to F-actin. ADP-Pi-actin subunits dissociate much more slowly from filament ends than ADP-actin subunits; therefore, the stability of filaments in ATP is due to terminal ADP-Pi subunits. The slow rate of dissociation of ADP-Pi-actin also explains the decrease in critical concentration of ADP-actin in the presence of Pi reported by Rickard and Sheterline (Richard, J. E., and Sheterline, P. (1986) J. Mol. Biol. 191, 273-280). The effect of Pi on the rate of actin dissociation from filaments is much more pronounced at the barbed end than at the pointed end. Using gelsolin to block the barbed end, we have shown that the two ends are energetically different in the presence of ATP and saturating Pi, but less different than in the absence of Pi. The results are interpreted within a new model for actin polymerization. It is possible that phosphate binding to F-actin can regulate motile events in muscle and nonmuscle cells.  相似文献   

14.
In this work calcium phosphate (CaP) compounds with different PO(3-)(4)/HPO(2-)(4) R molar ratios in the 0.65-149 range were synthesized. In fact, all these CaPs contain different amounts of HPO(2-)(4) and PO(3-)(4) ions as well as the amorphous precursors (tricalcium phosphate and octacalcium phosphate) of hydroxyapatite deposition, which was shown by in vitro and in vivo measurements. Spectroscopical IR and Raman results showed the presence of bands whose intensity ratio can be related to the molar ratio R; in particular, the Raman I(962)/I(987) and the IR I(1035)/I(1125) intensity ratios were characterized as markers of the molar ratio. For these CaP compounds a nucleation model, which was based on the ability of HPO(2-)(4) ions to form strong H bonds with PO(3-)(4) ions, was proposed.  相似文献   

15.
In the rapid “quench” kientics of myosin, the “initial phosphate burst” is the excess inorganic phosphate that is produced during the early time-course of ATP hydrolysis by myosin subfragment-1 (S-1) or HMM. In general, the existence of a Pi burst implies a rapid (i.e., generally an order of magnitude faster than the steady-state hydrolysis rate) lysis of the phospho-anhydride bond within the ATP molecule, followed by one or more slower steps that are rate limiting for the process. Thus, the presence of a Pi burst can provide an important clue to the mechanism of the reaction. However, in the case of actomyosin, this clue as long been the subject of controversy and misunderstanding. To measure the (initial) Pi burst, myosin S-1 (or HMM) is rapidly mixed with ATP and then the mixture is acid quenched after a specific time period. The medium produced contains free Pi generated from hydrolysis of the ATP. The quantitative measure of the phosphate generated in this way has always been significantly greater than that expected by steady-state “release” of Pi alone, and it is that very difference between this measured Pi after the quench and that amount of Pi expected to be released by steady-state considerations in that same time period that has been referred to as the “initial Pi burst”. Recent investigations of the kinetics of Pi release have used an entirely new method that directly measures the release of Pi from the enzyme-product complex. These studies have made reference to the properties of the “initial Pi burst” in the presence of actin, as well as to a new kinetic entity: the “burst of Pi release”, and have been often vague concerning the true nature of the initial Pi burst, as well as the properties of Pi release as predicted by the current models of the actin activation of the myosin ATPase activity. The purpose of the current article is to correct this oversight, to discuss the “burst” in some detail, and to display the kinetics predicted by the current models for the actin activation of myosin. Furthermore, predictions for the kinetics of the new “burst of Pi release” are discussed in terms of its ability to discriminate between the two current competing models for actin activation of the myosin ATPase activity.  相似文献   

16.
The ATP-Mg/Pi carrier in liver mitochondria is activated by micromolar Ca2+ and mediates net adenine nucleotide transport into and out of the mitochondrial matrix. The purpose of this study was to characterize certain features of ATP-Mg/Pi carrier activity that are essential for understanding how the mitochondrial adenine nucleotide content is regulated. The relative importance of ATP and ADP as transport substrates was investigated using specific trap assays to measure their separate rates of carrier-mediated efflux with Pi as the external counterion. Under energized conditions ATP efflux accounted for 88% of total ATP+ADP efflux. With oligomycin present to lower the matrix ATP/ADP ratio, ATP efflux was eliminated and ADP efflux was relatively unaffected. Mg2+ was stoichiometrically required for ATP influx and is probably transported simultaneously with ATP. Ca2+ and Mn2+ could substitute for the stoichiometric Mg2+ requirement. ADP influx and Pi-induced adenine nucleotide efflux were unaffected by external Mg2+. Experiments with Pi analogues suggested that Pi is transported as the divalent anion, HPO4(2-). The results show that ATP-Mg and divalent Pi are the major transport substrates; the most probable transport mechanism for the ATP-Mg/Pi carrier is an electroneutral exchange. The results are consistent with the hypothesis that the direction and magnitude of net adenine nucleotide movements are determined mainly by the (ATP-Mg)2- and HPO4(2-) concentration gradients across the inner mitochondrial membrane.  相似文献   

17.
Intact chloroplasts isolated from spinach were illuminated in the absence of inorganic phosphate (Pi) or with optimum concentrations of Pi added to the reaction medium. In the absence of Pi photosynthesis declined after the first 1–2 min and was less than 10% of the maximum rate after 5 min. Export from the chloroplast was inhibited, with up to 60% of the 14C fixed being retained in the chloroplast, compared to less than 20% in the presence of Pi. Despite the decreased export, chloroplasts depleted of Pi had lower levels of triose phosphate while the percentage of total phosphate in 3-phosphoglycerate was increased. Chloroplast ATP declined during Pi depletion and reached dark levels after 3–4 min in the light without added Pi. At this point, stromal Pi concentration was 0.2 mM, which would be limiting to ATP synthesis. Addition of Pi resulted in a rapid burst of oxygen evolution which was not initially accompanied by net CO2 fixation. There was a large decrease in 3-phosphoglycerate and hexose plus pentose monophosphates in the chloroplast stroma and a lesser decrease in fructose-1,6-bisphosphate. Stromal levels of triose phosphate, ribulose-1,5-bisphosphate and ATP increased after resupply of Pi. There was an increased export of 14-labelled compounds into the medium, mostly as triose phosphate. Light activation of both fructose-1,6-bisphosphatase and ribulose-1,5-bisphosphate carboxylase was decreased in the absence of Pi but increased following Pi addition.It is concluded that limitation of Pi supply to isolated chloroplasts reduced stromal Pi to the point where it limits ATP synthesis. The resulting decrease in ATP inhibits reduction of 3-phosphoglycerate to triose phosphate via mass action effects on 3-phosphoglycerate kinase. The lack of Pi in the medium also inhibits export of triose phosphate from the chloroplast via the phosphate transporter. Other sites of inhibition of photosynthesis during Pi limitation may be located in the regeneratige phase of the reductive pentose phosphate pathway.Abbreviations FBP Fructose-1,6-bisphosphate - FBPase Fructose-1,6-bisphosphatase - MP Hexose plus pentose monophosphates - PGA 3-phosphoglycerate - Pi inorganic orthophosphate - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - TP Triose Phosphate  相似文献   

18.
It is generally assumed that phosphate (Pi) effluxes from proximal tubule cells by passive diffusion across the basolateral (BL) membrane. We explored the mechanism of BL Pi efflux in proximal tubule-like OK cells grown on permeable filters and then loaded with 32P. BL efflux of 32P was significantly stimulated (P < 0.05) by exposing the BL side of the monolayer to 12.5 mM Pi, to 10 mM citrate, or by acid-loading the cells, and was inhibited by exposure to 0.05 mM Pi or 25 mM HCO3; by contrast, BL exposure to high (8.4) pH, 40 mM K+, 140 mM Na gluconate (replacing NaCl), 10 mM lactate, 10 mM succinate, or 10 mM glutamate did not affect BL 32P efflux. These data are consistent with BL Pi efflux from proximal tubule-like cells occurring, in part, via an electro-neutral sodium-sensitive anion transporter capable of exchanging two moles of intracellular acidic H2PO4- for each mole of extracellular basic HPO4= or for citrate.  相似文献   

19.
C Tesi  K Kitagishi  F Travers  T Barman 《Biochemistry》1991,30(16):4061-4067
The post-ATP binding steps of myosin subfragment 1 (S1) and actomyosin subfragment 1 (actoS1) ATPases were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The cleavage and release of Pi steps were studied by the rapid-flow quench method and the interaction of actin with S1 plus ATP by light scattering in a stopped-flow apparatus. At -15 degrees C, the interaction of actin with S1 remains tight, and the Km for the activation of S1 ATPase is very small (0.3 microM). The chemical data were interpreted by E + ATP----E*.ATP----E**.ADP.Pi----E*.ADP----products, where E is S1 or actoS1. In Pi burst experiments with S1, there was a large Pi burst of free Pi, but E**.ADP.Pi could not be detected. Here the predominant complex in the seconds time range is E*.ATP and in the steady-state E*.ADP. With actoS1, there was a small Pi burst of E**.ADP.Pi, evidence that the cleavage steps for S1 and actoS1 are different. From the stopped-flow experiments, the dissociation of actoS1 by ATP was complete, even at actin concentrations 60X its Km. Further, no interaction of actin with the key intermediate M*.ATP could be detected. Therefore, at -15 degrees C, actoS1 ATPase occurs by a dissociative pathway; in particular, the cleavage step appears to occur in the absence of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In order to test the ability of phosphate groups to quench the fluorescence of tryptophan in protein-nucleic acid complexes we have studied the effect of various phosphate ions on the fluorescence of tryptophan derivatives. Unsubstituted and monoalkyl monoanions (H2PO4- and CH3OPO3H-) quench the fluorescence of all investigated indole derivatives while the dimethyl anion (CH3O)2 PO2- does not. This suggests that quenching of tryptophan fluorescence by phosphate monoanions requires the presence of an acidic OH group and could be due to a proton transfer from the phosphate ion to the indole chromophore. Trianions (PO4 3-4) which are strong proton acceptors quench the fluorescence of all tryptophan derivatives except N(1)methyl tryptophan. This result strongly supports our proposal that quenching of tryptophan fluorescence by phosphate trianions occurs through deprotonation of the NH indole group. Bianions (HPO '4(7), and CH3O PO3 2-3) quench the fluorescence of several indole derivatives including N-acetyl tryptophanamide but have no effect on tryptophan or N(1)-methyl tryptophan. From our results we conclude that phosphate groups of nucleic acids are not able to quench the fluorescence of tryptophyl residues in protein-nucleic acid complexes except if an accessible residue is located near a phosphorylated polynucleotide chain end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号