首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane ghosts were isolated from Candida albicans ATCC 10261 yeast cells following stabilisation of spheroplasts with concanavalin A, osmotic lysis and Percoll density gradient centrifugation. Removal of extrinsic proteins with NaCl and methyl alpha-mannoside gave increased ATPase and chitin synthase specific activities in the resultant plasma membrane fraction. Sonication of this fraction yielded unilamellar plasma membrane vesicles which exhibited ATPase and chitin synthase specific activities of 4.5-fold and 3.0-fold, respectively, over those of the plasma membrane ghosts. ATPase activity in the membrane ghosts was optimal at pH 6.4, showed high substrate specificity (for Mg X ATP) and was inhibited 80% by sodium vanadate but less than 4% by oligomycin and azide. The effects of a range of other inhibitors were also characterised. Temperature effects of ATPase activity were marked, with a maximum at 35 degrees C. Breaks in the Arrhenius plot, at 12.2 degrees C and 28.9 degrees C, coincided with endothermic heat flow peaks detected by differential scanning calorimetry. ATPase was solubilised from the plasma membranes with Zwittergent in the presence of glycerol and phenylmethylsulphonyl fluoride and partially purified by glycerol density gradient centrifugation. The solubilised enzyme hydrolysed Mg X ATP at Vmax = 20 mumol X min-1 X mg-1 in the presence of phospholipids, with optimal activity at pH 6.0--6.5.  相似文献   

2.
A variety of commercially available cell wall hydrolytic enzyme preparations were screened alone and in various combinations for their ability to degrade the cell wall of Neurospora crassa wild type strain 1A. A combination was found which causes complete conversion of the normally filamentous germinated conidia to spherical structures in about 1.5 h. Examination of these spheroplasts by scanning electron microscopy indicated that, although they are spherical, they retain a smooth coat that can only be removed upon prolonged incubation in the enzyme mixture (about 10 h). The 10-h incubation in the enzyme mixture appears to have no obvious detrimental effects on the integrity of the plasma membrane since the activity and regulatory properties of the glucose active transport system in 10-h spheroplasts are essentially unimpaired. Importantly, plasma membranes can be isolated from the 10-h spheroplasts by an adaptation of the concanavalin A method developed previously in this laboratory for cells of the cell wall-less sl strain, which is not the case for the 1.5-h spheroplasts. The yield of plasma membrane vesicles isolated by this procedure is 18-36% as indicated by surface labeling with diazotized [125I]iodosulfanilic acid, and the preparation is less than 1% contaminated with mitochondrial protein. The chemical composition of the wild type plasma membranes is similar to that previously reported for membranes of the sl strain of Neurospora. The isolated wild type plasma membrane vesicles also exhibit all of the functional properties that have previously been demonstrated for the sl plasma membrane vesicles. The wild type vesicles catalyze MgATP-dependent electrogenic proton translocation as indicated by the concentrative uptake of [14C]SCN- and [14C]imidazole under the appropriate conditions, which indicates that they contain the plasma membrane H+-ATPase previously shown to exist in the sl plasma membranes and that they possess permeability barrier function as well. The vesicles also contain a Ca2+/H+ antiporter as evidenced by their ability to catalyze protonophore-inhibited MgATP-dependent 45Ca2+ accumulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses of the isolated vesicles indicate that the protein composition of the wild type vesicles is roughly similar to that of the sl plasma membranes with the H+-ATPase present as a major band of Mr approximately 105,000. The wild type plasma membrane ATPase forms a phosphorylated intermediate similar to that of the sl ATPase, and the specific activity of the H+-ATPase in both wild type and sl membranes is approximately 3 mumol of Pi released/mg of protein/min.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Characterization of functional domains of the lymphocyte plasma membrane   总被引:1,自引:0,他引:1  
Highly purified plasma membranes of calf thymocytes were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (fraction 1) eluted freely from the affinity column, the second (fraction 2) adhered specifically to concanavalin A-Sepharose. Previous analysis showed that both subfractions were right-side-out (Resch, K., Schneider, S. and Szamel, M. (1981) Anal. Biochem. 117, 282-292). The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. After enzymatic radioiodination of thymocytes, the relative distribution of labelled proteins and externally exposed phospholipids was very similar in isolated plasma membranes and in both membrane subfractions, indicating the plasma membrane nature of the subfractions separated by affinity chromatography on concanavalin A-Sepharose. This finding was further substantiated by the nearly identical specific activities of some membrane-bound enzymes, Mg2+-ATPase, alkaline phosphatase and gamma-glutamyl transpeptidase. The specific activities of (Na+ + K+)-ATPase and of lysolecithin acyltransferase were several-fold enriched in fraction 2 compared to fraction 1, especially after rechromatography of fraction 1 on concanavalin A-Sepharose. Unseparated membrane vesicles contained two types of binding site for concanavalin A. In contrast, isolated subfractions showed a linear Scatchard plot; fraction 2 exhibited fewer binding sites for concanavalin A: the association constant was, however, 3.5-times higher than that measured in fraction 1. When plasma membranes isolated from concanavalin A-stimulated lymphocytes were separated by affinity chromatography, the yield of the two subfractions was similar to that of membranes from unstimulated lymphocytes. Upon stimulation with concanavalin A, Mg2+-ATPase, gamma-glutamyl transpeptidase and alkaline phosphatase were suppressed in their activities in both membrane subfractions. In contrast, the specific activities of (Na+ + K+)-ATPase and lysolecithin acyltransferase were enhanced preferentially in the adherent fraction (fraction 2). The data suggest the existence of domains in the plasma membrane of lymphocytes which are formed by a spatial and functional coupling of receptors with high affinity for concanavalin A, and certain membrane-bound enzymes, implicated in the initiation of lymphocyte activation.  相似文献   

4.
Plasma membrane vesicles were isolated from shoots of light-grown wheat seedlings by preparative free-flow electrophoresis, aqueous polymer two-phase partition or both. Plasma membrane vesicles were identified from staining of thin sections prepared for electron microscopy with phosphotungstic acid at low pH. The orientation of the plasma membrane vesicles was determined from latency and trypsin sensitivity of K+ Mg2+ATPase and of glucan synthase II, and concanavalin A-peroxidase binding and membrane asymmetry visualized by electron microscopy. The K+Mg2+ATPase and of glucan synthase II activities of plasma membrane fractions isolated by two-phase partition were latent and trypsin resistant. The vesicles bound concanavalin A-peroxidase strongly and exhibited a cytoplasmic side-in morphology. These fractions of cytoplasmic side-in vesicles were less than 10% contaminated by cytoplasmic side-out vesicles. By free-flow electrophoresis, two populations of vesicles which stained with phosphotungstic acid at low pH, designated D and E, were obtained. The vesicle population with the lower electrophoretic mobility, fraction E, contained plasma membrane vesicles with properties similar to those of the plasma membrane vesicles obtained after two-phase partition. The phosphotungstic-reactive vesicles with greater electrophoretic mobility, fraction D, were concanavalin A unreactive with the cytoplasmic membrane leaflet outwards. Less than 50% of the K+Mg2+-ATPase activity of this fraction was latent and trypsin sensitive. The vesicles of fraction D appeared to be preferentially cytoplasmic side-out. The electrophoretic mobilities of cytoplasmic side-out (non-latent glucan synthase II activity) and cytoplasmic side-in (latent glncan synthase II activity) plasma membrane vesicles isolated from a frozen and thawed wheat plasma membrane fraction, corresponded with the mobilities of fraction D and E, respectively, again showing that the plasma membrane vesicles with the lesser electrophoretic mobility were cytoplasmic side-in. The cytoplasmic side-in and cytoplasmic side-out vesicles therefore showed opposite eletrophoretic mobilities compared with a previous free-flow electrophoretic separation of soybean plasma membranes. The majorities of the plasma membrane vesicles of both fractions D and E entered the upper phase upon two-phase partition with the phase composition used for purification of wheat plasma membranes. Thus, neither electrophoretic mobility nor phase partitioning characteristics can be used as the only criteria for assignment of vesicle orientation.  相似文献   

5.
Treatment of liver plasma membranes with phospholipase A2 or high doses of concanavalin A enhances the activity of Mg2+ATPase assayed at temperatures greater than 30 degrees C. The effects of the two treatments are not additive. Both the removal of phospholipids and binding of the lectin increase the degree of polarization of fluorescence of the lipid-soluble fluorophores, diphenylhexatriene and beta-parinaric acid, suggesting that decreased lipid fluidity may activate Mg2+-ATPase. In fact modification of lipid fluidity by reconstitution of phospholipase-treated membranes with phosphatidylcholines of defined fatty acid composition or by addition of cis-vaccenic acid showed a strong inverse correlation between Mg2+ATPase activity and lipid fluidity as monitored by fluorescence polarization. However, despite the ability of concanavalin A to nonspecifically order membrane lipid, its effect on Mg2+ATPase is apparently not mediated in this manner because other enzyme-activating lectins such as Ricinus communis agglutinin and wheat germ agglutinin are without effect on lipid fluidity. The facts that lectins of lower valency than tetravalent native concanavalin A such as divalent succinyl concanavalin A are far less effective in activating the enzyme and that paraformaldehyde treatment also activates suggests that cross-linking of membrane proteins is responsible. Hence, the diminution in activity of this membrane enzyme due to the disordering effect of heat in the physiological temperature range can be counteracted by isothermally increasing the order of either membrane lipid or protein.  相似文献   

6.
Plasma membranes from Candida tropicalis grown on glucose or hexadecane were isolated using a method based on the difference in surface charge of mitochondria and plasma membranes. After mechanical disruption of the cells, a fraction consisting of mitochondrial and plasma membrane vesicles was obtained by differential centrifugation. Subsequently the mitochondria were separated from the plasma membrane vesicles by aggregation of the mitochondria at a pH corresponding to their isoelectric point. Additional purification of the isolated plasma membrane vesicles was achieved by osmolysis. Surface charge densities of mitochondria and plasma membranes were determined and showed substrate-dependent differences. The isolated plasma membranes were morphologically characterized by electron microscopy and, as a marker enzyme, the activity of Mg2+-dependent ATPase was determine. By checking for three mitochondrial marker enzymes the plasma membrane fractions were estimated to be 94% pure with regard to mitochondrial contamination.  相似文献   

7.
The ionic influence and ouabain sensitivity of lymphocyte mg-2+-atpase and Mg-2+-(Na+ +K+)-activated ATPase were studied in intact cells, microsomal fraction and isolated plasma membranes. The active site of 5'-nucleotidase and Mg2+-ATPase seemed to be localized on the external side of the plasma membrane whereas the ATP binding site of (Na+ +K+)-ATPase was located inside the membrane. Concanavalin A induced an early stimulation of Mg2+-APTase and (Na+ +K+)-ATPase both on intact cells and purified plasma membranes. In contrast, 5'-nucleotidase activity was not affected by the mitogen. Although the thymocyte Mg2+-ATPase activity was 3-5 times lower than in spleen lymphocytes, it was much more stimulated in the former cells (about 40 versus 20%). (Na+ +K+)-ATPase activity was undectectable in thymocytes. However, in spleen lymphocytes (Na+ +K+)-ATPase activity can be detected and was 30% increased by concanavalin A. Several aspects of this enzymic stimulation had also characteristic features of blast transformation induced by concanavalin A, suggesting a possible role of these enzymes, especially Mg2+-ATPase, in lymphocyte stimulation.  相似文献   

8.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

9.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2+ +Mg2+ dependent ATPase activities (about 9 mumol/h per mg protein). The Na+ +K+ +Mg2+ dependent ATPase activity was 3.2 mumol/h per mg (+/- 1.0, S.D., n = 3) when microvesicles were prepared according to (1) and 1.5 mumol/h per mg (+/- 1.0, S.D., n = 3) when prepared according to (2). Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2+ +Mg2+ dependent ATPase from any of the preparations. As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy. The Ca2+ +Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na+ +K+ +Mg2+ ATPase was decreased. Na+ +K+ +Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na+ +K+ +Mg2+ dependent ATPase activity in the eluted coated microvesicle fraction. It was concluded that Ca2+ +Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

10.
Erythrocytes and their isolated membranes display ATP-dependent endocytosis. To localize the enzymes responsible for this phenomenon, the erythrocyte membranes (ghosts) were fractionated under conditions which retained ATPase activity. Fractionation of the ghosts resulted in three fractions: spectrin-actin, the peripheral proteins soluble in high salt, and the smooth membrane containing integral proteins. On the average, 87% of the protein and 88% of the phosphorus of the original ghosts were recovered in these fractions, and all of the kinds of ATP-splitting activities of the membrane were recovered in the smooth membrane. A tiny ATPase activity, detectable by special methodology in spectrinactin, could have been due to contamination with membranous material. Although the purified spectrin-actin did not have a significant ATPase of its own, it stimulated the Ca2+, Mg2+-ATPase of the smooth membrane significantly, suggesting a cooperative interaction between these two fractions. This segregation of the ATPase activities into the smooth membrane, combined with the energy dependence of endocytosis, showed that the smooth membrane must be involved in the energy production for endocytosis. The possibility that the spectrin-actin filaments cooperate with a myosinlike ATPase in the membrane to generate membrane movements is discussed.  相似文献   

11.
We have purified unadhered human monocytes in sufficient quantities to prepare monocyte plasma membrane vesicles and study vesicular calcium transport. Monocytes were isolated from plateletpheresis residues by counterflow centrifugal elutriation. By combining this source and procedure, 7 x 10(8) monocytes of over 90% purity were obtained. The membranes, isolated on a sucrose step gradient, had an 18-fold enrichment in Na,K-ATPase, a 29-fold diminution of succinate dehydrogenase activity and were vesicular on transmission electron micrographs. The membrane vesicles loaded with oxalate accumulated calcium only in the presence of Mg and ATP. Calcium uptake did not occur if ATP was replaced by any of five nucleotide phosphates or if Mg was omitted. Calcium transport had a maximal velocity of 4 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.53 microM. The ionophore A23187 completely inhibited calcium accumulation while 5 mM sodium cyanide and 10 microM ouabain had no effect. A calcium-activated ATPase was present in the same plasma membrane vesicles. The calcium ATPase had a maximal velocity of 18.0 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.60 microM. Calcium-activated ATPase activity was absent if Mg was omitted or if (gamma - 32P) GTP replaced (gamma - 32P) ATP. Monocyte plasma membranes that were stripped of endogenous calmodulin by EGTA treatment showed a reduced level of calcium uptake and calcium ATPase activity. The addition of exogenous calmodulin restored the transport activity to that of unstripped monocyte plasma membranes. Thus, monocyte plasma membrane vesicles contain a highly specific, ATP-dependent calcium transport system and a calcium-ATPase with similar high calcium affinities.  相似文献   

12.
Cholinergic synaptic vesicles from the electric organ of Torpedo marmorata are associated with a Mg2+-ATPase insensitive to ouabain and oligomycin. Treatment of vesicle membranes with dichloromethane releases a Mg2+-ATPase with apparent molecular mass of around 250 kDa as determined by gel filtration. The vesicular ATPase resembles the mitochondrial F1-ATPase in these properties. Gel electrophoresis of the solubilized ATPase shows however that only a single 50-kDa band is present as compared to the alpha-subunit (52 kDa) and beta-subunit (50 kDa) of electric organ mitochondrial F1-ATPase present in this range of molecular mass range. In agreement, covalent photoaffinity labelling of isolated vesicles with azido-ATP shows a 50-kDa band. Vesicle ghosts were found to accumulate [14C]methylamine in an ATP-dependent manner indicating the presence of an inwardly directed proton pump. We conclude that cholinergic vesicles contain a proton pump probably driven by the Mg2+-ATPase here described, which generates an electrochemical gradient across the vesicle membrane and is necessary for uptake and storage of acetylcholine within the vesicles.  相似文献   

13.
Isolated membrane vesicles from pig stomach smooth muscle (antral part) were subfractionated by a density gradient procedure modified in order to obtain an efficient extraction of extrinsic proteins. By using this method in combination with digitonin-treatment, an endoplasmic reticulum fraction contaminated with maximally 10 to 20% of plasma membranes was isolated, together with a plasma membrane fraction containing at most 30% endoplasmic reticulum. The endoplasmic reticulum and plasma membrane fractions differed in protein composition, reaction to digitonin, binding of wheat germ agglutinin, activities of marker enzymes and in the characteristics of the Ca2+ uptake. The Ca2+ uptake by the endoplasmic reticulum was much more stimulated by oxalate than the uptake by plasma membranes. Both fractions showed a (Ca2+ + Mg2+)-ATPase activity, but the largest amount of this enzyme was present in the plasma membranes. The study of the phosphorylated intermediates of the (Ca2+ + Mg2+)-ATPase by polyacrylamide gel electrophoresis revealed two phosphoproteins one of 130 kDa and one of 100 kDa (Wuytack, F., Raeymaekers, L., De Schutter, G. and Casteels, R. (1982) Biochim. Biophys. Acta 693, 45-52). The 130 kDa enzyme was predominant in the fraction enriched in plasma membrane whereas the distribution of the 100 kDa polypeptide correlated with the endoplasmic reticulum markers. The 130 kDa ATPase was the main 125I-calmodulin binding protein detected on nitrocellulose blots of proteins separated by gel electrophoresis. The (Ca2+ + Mg2+)-ATPase activity of the plasma membranes was higher than the (Na+ + K+)-ATPase activity, suggesting that the Ca2+ extrusion from these cells depends much more on the activity of the (Ca2+ + Mg2+)-ATPase than on Na+-Ca2+ exchange.  相似文献   

14.
Baso-lateral membranes were isolated from the canine and porcine kidney cortex by several different methods currently in use. Sidedness of the isolated membrane vesicles was determined by procedures using 1. ouabain-sensitive (Na+K+)ATPase assays in the presence and in the absence of sodium dodecylsulfate or digitoxigenin plus monensin, 2. (Na+, K+, Mg2+)ATPase assays with valinomycin, 3. sialidase accessibility, and 4. binding of hydrophilic and lipophilic cardiac glycosides. The (Na+K+)ATPase activity in the membrane preparation was increased 10-fold of that found in the crude homogenate. Isolated membrane vesicles, prepared by different techniques, were all found to be overwhelmingly of right-side-out orientation;namely, right-side-out = 51-68%, inside-out = 4-13%, and unsealed vesicles = 26-42%. Results of sidedness determinations by different methods showed a good agreement. Thus, predominantly right-side-out oriented vesicles are formed during conventional isolation procedures for membranes of the kidney cortex.  相似文献   

15.
ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS   总被引:13,自引:7,他引:6       下载免费PDF全文
A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells.  相似文献   

16.
The Ca2+ pump of the plasma membrane of human red blood cells is associated with the activity of a (Ca2+ + Mg2+)-ATPase. Both the ATPase and the pump are stimulated above basal activities by calmodulin, an ubiquitous Ca2+-binding protein. Calmodulin isolated from human red blood cells was shown to be equipotent and equieffective with that isolated from beef brain. Half-maximal activation of ATPase (isolated red blood cell membranes, 37 C) and transport (inside-out red blood cell membrane vesicles, 25 C) were obtained with 2.5 and 4.4 nM calmodulin, respectively. Ca2+ dependence of Ca2+ transport was measured in the absence and in the presence of 50 nM calmodulin. At all Ca2+ concentrations above 2 X 10(-7) M Ca2+, the rate of transport was greater in the presence of calmodulin. The results implicate calmodulin in the regulation of the plasma membrane Ca2+ pump, but the mechanism(s) remain to be elucidated.  相似文献   

17.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 mumol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 +/- 9 microM and 0.25 +/- 0.10 microM, respectively. Phosphorylation of plasma membranes with [gamma-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

18.
The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin.  相似文献   

19.
C Y Kwan 《Enzyme》1982,28(4):317-327
Studies of ATP hydrolysis by various subcellular fractions isolated from rat mesenteric arteries and veins indicate that an apparent ATPase activity, which can be activated by Mg2+ or Ca2+, is primarily associated with the plasma membranes. Although both Mg2+-activated and Ca2+-activated ATPase activities under the optimal condition are substantially lower in venous than in arterial plasma membrane fraction, their dependence on the concentration of Mg2+ and Ca2+ are quite similar in arterial as well as venous plasma membrane fractions. No synergistic effect on ATP hydrolysis was observed in the presence of both Mg2+ and Ca2+. In addition, Mg2+-activated and Ca2+-activated ATPase activities show similar pH dependence, inhibition by deoxycholate, stability toward heat inactivation and substrate specificity. Furthermore, Mg2+-activated and Ca2+-activated ATPase activities were similarly reduced in vascular smooth muscles of spontaneously hypertensive rats. These results suggest that the activation of ATP hydrolysis by Mg2+ or Ca2+ may represent a single enzyme moiety in the plasma membrane of vascular smooth muscle. The possible involvement of such ATPase in the Ca2+ transport function of vascular smooth muscle is discussed.  相似文献   

20.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+ -ATPase and the Mg2+ -ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membrane-bound Mg2+ -ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20 degrees C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+ -ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at -20 degrees C, which was characteristic of hepatoma plasma membrane Mg2+ -ATPase. With solubilized Mg2+ -ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+ -ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at -20 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号