首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Localized distribution of malignant hyperthermia (MH) and central core disease (CCD) mutations in N-terminal and central domains of the ryanodine receptor suggests that the interaction between these domains may be involved in Ca(2+) channel regulation. To test this hypothesis, we investigated the effects of a new synthetic domain peptide DP4 corresponding to the Leu(2442)-Pro(2477) region of the central domain. DP4 enhanced ryanodine binding and induced a rapid Ca(2+) release. The concentration for half-maximal activation by agonists was considerably reduced in the presence of DP4. These effects of DP4 are analogous to the functional modifications of the ryanodine receptor caused by MH/CCD mutations (viz. hyperactivation of the channel and hypersensitization of the channel to agonists). Replacement of Arg of DP4 with Cys, mimicking the in vivo Arg(2458)-to-Cys(2458) mutation, abolished the activating effects of DP4. An N-terminal domain peptide DP1 (El-Hayek, R., Saiki, Y., Yamamoto, T., and Ikemoto, N. (1999) J. Biol. Chem. 274, 33341-33347) shows similar activation/sensitization effects. The addition of both DP4 and DP1 produced mutual interference of their activating functions. We tentatively propose that contact between the two (N-terminal and central) domains closes the channel, whereas removal of the contact by these domain peptides or by MH/CCD mutations de-blocks the channel, resulting in hyperactivation/hyper-sensitization effects.  相似文献   

2.
Dantrolene stabilizes domain interactions within the ryanodine receptor   总被引:3,自引:0,他引:3  
Interdomain interactions between N-terminal and central domains serving as a "domain switch" are believed to be essential to the functional regulation of the skeletal muscle ryanodine receptor-1 Ca(2+) channel. Mutational destabilization of the domain switch in malignant hyperthermia (MH), a genetic sensitivity to volatile anesthetics, causes functional instability of the channel. Dantrolene, a drug used to treat MH, binds to a region within this proposed domain switch. To explore its mechanism of action, the effect of dantrolene on MH-like channel activation by the synthetic domain peptide DP4 or anti-DP4 antibody was examined. A fluorescence probe, methylcoumarin acetate, was covalently attached to the domain switch using DP4 as a delivery vehicle. The magnitude of domain unzipping was determined from the accessibility of methylcoumarin acetate to a macromolecular fluorescence quencher. The Stern-Volmer quenching constant (K(Q)) increased with the addition of DP4 or anti-DP4 antibody. This increase was reversed by dantrolene at both 37 and 22 degrees C and was unaffected by calmodulin. [(3)H]Ryanodine binding to the sarcoplasmic reticulum and activation of sarcoplasmic reticulum Ca(2+) release, both measures of channel activation, were enhanced by DP4. These activities were inhibited by dantrolene at 37 degrees C, yet required the presence of calmodulin at 22 degrees C. These results suggest that the mechanism of action of dantrolene involves stabilization of domain-domain interactions within the domain switch, preventing domain unzipping-induced channel dysfunction. We suggest that temperature and calmodulin primarily affect the coupling between the domain switch and the downstream mechanism of regulation of Ca(2+) channel opening rather than the domain switch itself.  相似文献   

3.
Hamada T  Bannister ML  Ikemoto N 《Biochemistry》2007,46(14):4272-4279
Ryanodine receptor (RyR) mutations linked with some congenital skeletal and cardiac diseases are localized to three easily definable regions: region 1 (N-terminal domain), region 2 (central domain), and a rather broad region 3 containing the channel pore. As shown in our recent studies, the interdomain interaction between regions 1 and 2 plays a critical role in channel regulation and pathogenesis. Here we present evidence that within region 3 there is a similar channel regulation mechanism mediated by an interdomain interaction. DP15, a peptide corresponding to RyR1 residues 4820-4841, produced significant activation of [3H]ryanodine binding above threshold Ca2+ concentrations (>or=0.3 microM), but MH mutations (L4823P or L4837V) made in DP15 almost completely abolished its channel activating function. To identify the DP15 binding site(s) within RyR1, DP15 (labeled with a fluorescent probe Alexa Fluor 680 and a photoaffinity cross-linker APG) was cross-linked to RyR1, and the site of cross-linking was identified by gel analysis of fluorescently labeled proteolytic fragments with the aid of Western blotting with site-specific antibodies. The shortest fluorescently labeled band was a 96 kDa fragment which was stained with an antibody directed to the region of residues 4114-4142 of RyR1, indicating that the interaction between the region of residues 4820-4841 adjacent to the channel pore and the 96 kDa segment containing the region of residues 4114-4142 is involved in the mechanism of Ca2+-dependent channel regulation. In further support of this concept, anti-DP15 antibody and cardiac counterpart of DP15 produced channel activation similar to that of DP15.  相似文献   

4.
To explain the mechanism of pathogenesis of channel disorder in MH (malignant hyperthermia), we have proposed a model in which tight interactions between the N-terminal and central domains of RyR1 (ryanodine receptor 1) stabilize the closed state of the channel, but mutation in these domains weakens the interdomain interaction and destabilizes the channel. DP4 (domain peptide 4), a peptide corresponding to residues Leu2442-Pro2477 of the central domain, also weakens the domain interaction and produces MH-like channel destabilization, whereas an MH mutation (R2458C) in DP4 abolishes these effects. Thus DP4 and its mutants serve as excellent tools for structure-function studies. Other MH mutations have been reported in the literature involving three other amino acid residues in the DP4 region (Arg2452, Ile2453 and Arg2454). In the present paper we investigated the activity of several mutants of DP4 at these three residues. The ability to activate ryanodine binding or to effect Ca2+ release was severely diminished for each of the MH mutants. Other substitutions were less effective. Structural studies, using NMR analysis, revealed that the peptide has two a-helical regions. It is apparent that the MH mutations are clustered at the C-terminal end of the first helix. The data in the present paper indicates that mutation of residues in this region disrupts the interdomain interactions that stabilize the closed state of the channel.  相似文献   

5.
There is a considerable controversy about the postulated role of the Thr(671)-Leu(690) (peptide A) region of the dihydropyridine (DHP) receptor alpha1 II-III loop. Here we report that peptide A introduced the fluorescence probe methyl coumarin acetamido (MCA) in a well defined region of the ryanodine receptor (RyR), A-site, in a specific manner. Depolarization of the T-tubule moiety of the triad induced a rapid increase of the fluorescence intensity of the MCA attached to the A-site. Other RyR agonists, which activate the RyR without mediation of the DHP receptor (e.g. caffeine, polylysine, and peptide A), induced Ca(2+) release without producing such an MCA fluorescence increase. Both magnitudes of the fluorescence change and Ca(2+) release increased with the increase in the degree of T-tubule depolarization. MCA fluorescence increase at the A-site and subsequent sarcoplasmic reticulum Ca(2+) release were blocked by blocking of the DHP receptor-to-RyR communication. These results may be accounted for by two alternative models as follows. (a) Upon T-tubule depolarization a portion of the DHP receptor comes close to the RyR, forming a hydrophobic interface (within such an interface the A-site is located), or (b) T-tubule depolarization may produce a local conformational change in the A-site-containing region of the RyR that is not necessarily within the DHP receptor/RyR junction.  相似文献   

6.
Dantrolene is a drug that suppresses intracellular Ca(2+) release from sarcoplasmic reticulum (SR) in skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Although its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca(2+) release channel in SR, as a molecular target for dantrolene using the photoaffinity analog [(3)H]azidodantrolene. Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [(3)H]azidodantrolene, indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1 previously shown to affect RyR1 function in vitro and in vivo were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2s, peptides containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [(3)H]azidodantrolene. A monoclonal anti-RyR1 antibody that recognizes RyR1 and its 1400-amino acid N-terminal fragment recognizes DP1 and DP1-2s in both Western blots and immunoprecipitation assays and specifically inhibits [(3)H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in SR. Our results indicate that synthetic domain peptides can mimic a native, ligand-binding conformation in vitro and that the dantrolene-binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino acids 590-609.  相似文献   

7.
We have demonstrated recently that CICR (Ca2+-induced Ca2+ release) activity of RyR1 (ryanodine receptor 1) is held to a low level in mammalian skeletal muscle ('suppression' of the channel) and that this is largely caused by the interdomain interaction within RyR1 [Murayama, Oba, Kobayashi, Ikemoto and Ogawa (2005) Am. J. Physiol. Cell Physiol. 288, C1222-C1230]. To test the hypothesis that aberration of this suppression mechanism is involved in the development of channel dysfunctions in MH (malignant hyperthermia), we investigated properties of the RyR1 channels from normal and MHS (MH-susceptible) pig skeletal muscles with an Arg615-->Cys mutation using [3H]ryanodine binding, single-channel recordings and SR (sarcoplasmic reticulum) Ca2+ release. The RyR1 channels from MHS muscle (RyR1MHS) showed enhanced CICR activity compared with those from the normal muscle (RyR1N), although there was little or no difference in the sensitivity to several ligands tested (Ca2+, Mg2+ and adenine nucleotide), nor in the FKBP12 (FK506-binding protein 12) regulation. DP4, a domain peptide matching the Leu2442-Pro2477 region of RyR1 which was reported to activate the Ca2+ channel by weakening the interdomain interaction, activated the RyR1N channel in a concentration-dependent manner, and the highest activity of the affected channel reached a level comparable with that of the RyR1MHS channel with no added peptide. The addition of DP4 to the RyR1MHS channel produced virtually no further effect on the channel activity. These results suggest that stimulation of the RyR1MHS channel caused by affected inter-domain interaction between regions 1 and 2 is an underlying mechanism for dysfunction of Ca2+ homoeostasis seen in the MH phenotype.  相似文献   

8.
In the present study we show that the interaction of the CaM (calmodulin)-binding domain (Lys(3614)-Asn(3643)) with the Cys(4114)-Asn(4142) region (a region included in the CaM-like domain) serves as an intrinsic regulator of the RyR1 (type-1 ryanodine receptor). We tested the effects of antibodies raised against the two putative key regions of RyR1 [anti-(Lys(3614)-Asn(3643)) and anti-(Cys(4114)-Asn(4142)) antibodies]. Both antibodies produced significant inhibition of [3H]ryanodine-binding activity of RyR1. This suggests that the inter-domain interaction between the two domains, Lys(3614)-Asn(3643) and Cys(4114)-Asn(4142), activates the channel, and that the binding of antibody to either side of the interacting domain pair interfered with the formation of a 'channel-activation link' between the two regions. In order to spectroscopically monitor the mode of interaction of these domains, the site of inter-domain interaction was fluorescently labelled with MCA [(7-methoxycoumarin-4-yl)acetyl] in a site-directed manner. The accessibility of the bound MCA to a large molecular mass fluorescence quencher, BSA-QSY (namely, the size of a gap between the interacting domains) decreased with an increase of [Ca2+] in a range of 0.03-2.0 microM, as determined by Stern-Volmer fluorescence quenching analysis. The Ca2+-dependent decrease in the quencher accessibility was more pronounced in the presence of 150 microM 4-CmC (4-chlorometacresol), and was reversed by 1 mM Mg2+ (a well-known inhibitor of Ca2+/agonist-induced channel activation). These results suggest that the Lys(3614)-Asn(3643) and Cys(4114)-Asn(4142) regions of RyR1 interact with each other in a Ca2+- and agonist-dependent manner, and this serves as a mechanism of Ca2+- and agonist-dependent activation of the RyR1 Ca2+ channel.  相似文献   

9.
DP4 is a 36-residue synthetic peptide that corresponds to the Leu(2442)-Pro(2477) region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca(2)+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618-11625). We have investigated the effects of DP4 on local SR Ca(2)+ release events (Ca(2)+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca(2)+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca(2)+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca(2)+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca(2)+ release channel(s) generating the sparks. DP4 also increased [(3)H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca(2)+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca(2)+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg(17) to Cys(17) replacement (DP4mut), which corresponds to the Arg(2458)-to-Cys(2458) mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg(2)+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg(2)+-free RyR(s), thus promoting channel opening and production of Ca(2)+ sparks.  相似文献   

10.
The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.  相似文献   

11.
Calmodulin (CaM) activates the skeletal muscle ryanodine receptor (RyR1) at nanomolar Ca(2+) concentrations but inhibits it at micromolar Ca(2+) concentrations, indicating that binding of Ca(2+) to CaM may provide a molecular switch for modulating RyR1 channel activity. To directly examine the Ca(2+) sensitivity of RyR1-complexed CaM, we used an environment-sensitive acrylodan adduct of CaM. The resulting (ACR)CaM probe displayed high-affinity binding to, and Ca(2+)-dependent regulation of, RyR1 similar to that of unlabeled wild-type (WT) CaM. Upon addition of Ca(2+), (ACR)CaM exhibited a substantial (>50%) decrease in fluorescence (K(Ca) = 2.7 +/- 0.8 microM). A peptide derived from the RyR1 CaM binding domain (RyR1(3614)(-)(43)) caused an even more pronounced Ca(2+)-dependent fluorescence decrease, and a >or=10-fold leftward shift in its K(Ca) (0.2 +/- 0.1 microM). In the presence of intact RyR1 channels in SR vesicles, (ACR)CaM fluorescence spectra were distinct from those in the presence of RyR1(3614)(-)(43), although a Ca(2+)-dependent decrease in fluorescence was still observed. The K(Ca) for (ACR)CaM fluorescence in the presence of SR (0.8 +/- 0.4 microM) was greater than in the presence of RyR1(3614)(-)(43) but was consistent with functional determinations showing the conversion of (ACR)CaM from channel activator (apoCaM) to inhibitor (Ca(2+)CaM) at Ca(2+) concentrations between 0.3 and 1 microM. These results indicate that binding to RyR1 targets evokes significant changes in the CaM structure and Ca(2+) sensitivity (i.e., CaM tuning). However, changes resulting from binding of CaM to the full-length, tetrameric channels are clearly distinct from changes caused by the RyR1-derived peptide. We suggest that the Ca(2+) sensitivity of CaM when in complex with full-length channels may be tuned to respond to physiologically relevant changes in Ca(2+).  相似文献   

12.
The type 1 ryanodine receptor (RyR1) is a Ca(2+) release channel found in the sarcoplasmic reticulum of skeletal muscle and plays a pivotal role in excitation-contraction coupling. The RyR1 channel is activated by a conformational change of the dihydropyridine receptor upon depolarization of the transverse tubule, or by Ca(2+) itself, i.e. Ca(2+)-induced Ca(2+) release (CICR). The molecular events transmitting such signals to the ion gate of the channel are unknown. The S4-S5 linker, a cytosolic loop connecting the S4 and S5 transmembrane segments in six-transmembrane type channels, forms an α-helical structure and mediates signal transmission in a wide variety of channels. To address the role of the S4-S5 linker in RyR1 channel gating, we performed alanine substitution scan of N-terminal half of the putative S4-S5 linker (Thr(4825)-Ser(4829)) that exhibits high helix probability. The mutant RyR1 was expressed in HEK cells, and CICR activity was investigated by caffeine-induced Ca(2+) release, single-channel current recordings, and [(3)H]ryanodine binding. Four mutants (T4825A, I4826A, S4828A, and S4829A) had reduced CICR activity without changing Ca(2+) sensitivity, whereas the L4827A mutant formed a constitutive active channel. T4825I, a disease-associated mutation for malignant hyperthermia, exhibited enhanced CICR activity. An α-helical wheel representation of the N-terminal S4-S5 linker provides a rational explanation to the observed activities of the mutants. These results suggest that N-terminal half of the S4-S5 linker may form an α-helical structure and play an important role in RyR1 channel gating.  相似文献   

13.
Of the three divergent regions of ryanodine receptors (RyRs), divergent region 3 (DR3) is the best studied and is believed to be involved in excitation-contraction coupling as well as in channel regulation by Ca(2+) and Mg(2+). To gain insight into the structural basis of DR3 function, we have determined the location of DR3 in the three-dimensional structure of RyR2. We inserted green fluorescent protein (GFP) into the middle of the DR3 region after Thr-1874 in the sequence. HEK293 cells expressing this GFP-RyR2 fusion protein, RyR2(T1874-GFP,) were readily detected by their green fluorescence, indicating proper folding of the inserted GFP. RyR2(T1874-GFP) was further characterized functionally by assays of Ca(2+) release and [(3)H]ryanodine binding. These analyses revealed that RyR2(T1874-GFP) functions as a caffeine- and ryanodine-sensitive Ca(2+) release channel and displays Ca(2+) dependence and [(3)H]ryanodine binding properties similar to those of the wild type RyR2. RyR2(T1874-GFP) was purified from cell lysates in a single step by affinity chromatography using GST-FKBP12.6 as the affinity ligand. The three-dimensional structure of the purified RyR2(T1874-GFP) was then reconstructed using cryoelectron microscopy and single particle image analysis. Comparison of the three-dimensional reconstructions of wild type RyR2 and RyR2(T1874-GFP) revealed the location of the inserted GFP, and hence the DR3 region, in one of the characteristic domains of RyR, domain 9, in the clamp-shaped structure adjacent to the FKBP12 and FKBP12.6 binding sites. COOH-terminal truncation analysis demonstrated that a region between 1815 and 1855 near DR3 is essential for GST-FKBP12.6 binding. These results provide a structural basis for the role of the DR3 region in excitation-contraction coupling and in channel regulation.  相似文献   

14.
The recently devised domain peptide probe technique was used to identify and characterize critical domains of the cardiac ryanodine receptor (RyR2). A synthetic peptide corresponding to the Gly(2460)-Pro(2495) domain of the RyR2, designated DPc10, enhanced the ryanodine binding activity and increased the sensitivity of the RyR2 to activating Ca(2+): the effects that resemble the typical phenotypes of cardiac diseases. A single Arg-to-Ser mutation made in DPc10, mimicking the recently reported Arg(2474)-to-Ser(2474) human mutation, abolished all of these effects that would have been produced by DPc10. On the basis of the principle of the domain peptide probe approach (see Model 1), these results indicate that the in vivo RyR2 domain corresponding to DPc10 plays a key role in the cardiac channel regulation and in the pathogenic mechanism. This domain peptide approach opens the new possibility in the studies of the regulatory and pathogenic mechanisms of the cardiac Ca(2+) channel.  相似文献   

15.
To test the hypothesis that interactions among several putative domains of the ryanodine receptor (RyR) are involved in the regulation of its Ca(2+) release channel, we synthesized several peptides corresponding to selected NH(2)-terminal regions of the RyR. We then examined their effects on ryanodine binding and Ca(2+) release activities of the sarcoplasmic reticulum isolated from skeletal and cardiac muscle. Peptides 1-2s, 1-2c, and 1 enhanced ryanodine binding to cardiac RyR and induced a rapid Ca(2+) release from cardiac SR in a dose-dependent manner. The order of the potency for the activation of the Ca(2+) release channel was 1-2c > 1 > 1-2s. Interestingly, these peptides produced significant activation of the cardiac RyR at near zero or subactivating [Ca(2+)], indicating that the peptides enhanced the Ca(2+) sensitivity of the channel. Peptides 1-2c, 1-2s, and 1 had virtually no effect on skeletal RyR, although occasional and variable extents of activation were observed in ryanodine binding assays performed at 36 degrees C. Peptide 3 affected neither cardiac nor skeletal RyR. We propose that domains 1 and 1-2 of the RyR, to which these activating peptides correspond, would interact with one or more other domains within the RyR (including presumably the Ca(2+)-binding domain) to regulate the Ca(2+) channel.  相似文献   

16.
Skeletal muscle excitation-contraction coupling involves activation of homotetrameric ryanodine receptor ion channels (RyR1s), resulting in the rapid release of Ca(2+) from the sarcoplasmic reticulum. Previous work has shown that Ca(2+) release is impaired by mutations in RyR1 linked to Central Core Disease and Multiple Minicore Disease. We studied the consequences of these mutations on RyR1 function, following their expression in human embryonic kidney 293 cells and incorporation in lipid bilayers. RyR1-G4898E, -G4898R, and -DeltaV4926/I4927 mutants in the C-terminal pore region of RyR1 and N-terminal RyR1-R110W/L486V mutant all showed negligible Ca(2+) permeation and loss of Ca(2+)-dependent channel activity but maintained reduced K(+) conductances. Co-expression of wild type and mutant RyR1s resulted in Ca(2+)-dependent channel activities that exhibited intermediate Ca(2+) selectivities compared with K(+), which suggested the presence of tetrameric RyR1 complexes composed of wild type and mutant subunits. The number of wild-type subunits to maintain a functional heterotetrameric channel differed among the four RyR1 mutants. The results indicate that homozygous RyR1 mutations associated with core myopathies abolish or greatly reduce sarcoplasmic reticulum Ca(2+) release during excitation-contraction coupling. They further suggest that in individuals, expressing wild type and mutant alleles, a substantial portion of RyR1 channels is able to release Ca(2+) from sarcoplasmic reticulum.  相似文献   

17.
Calmodulin (CaM) inhibits the skeletal muscle ryanodine receptor-1 (RyR1) and cardiac muscle RyR2 at micromolar Ca(2+) but activates RyR1 and inhibits RyR2 at submicromolar Ca(2+) by binding to a single, highly conserved CaM-binding site. To identify regions responsible for the differential regulation of RyR1 and RyR2 by CaM, we generated chimeras encompassing and flanking the CaM-binding domain. We found that the exchange of the N- and C-terminal flanking regions differentially affected RyR1 and RyR2. A RyR1/RyR2 chimera with an N-terminal flanking RyR2 substitution (RyR2 amino acid (aa) 3537-3579) was activated by CaM in single channel measurements at both submicromolar and micromolar Ca(2+). A RyR2/RyR1 chimera with a C-terminal flanking the 86-amino acid RyR1 substitution (RyR1 aa 3640-3725) bound (35)S-CaM but was not inhibited by CaM at submicromolar Ca(2+). In this region, five non-conserved amino acid residues (RyR1 aa 3680 and 3682-3685 and RyR2 aa 3647 and 3649-3652) differentially affect RyR helical probability. Substitution of the five amino acid residues in RyR1 with those of RyR2 showed responses to CaM comparable with wild type RyR1. In contrast, substitution of the five amino acid residues in RyR2 with those of RyR1 showed loss of CaM inhibition, whereas substitution of the five RyR2 sequence residues in the RyR2 chimera containing the RyR1 calmodulin-binding domain and C-flanking sequence restored wild type RyR2 inhibition by CaM at submicromolar Ca(2+). The results suggest that different regions are involved in CaM modulation of RyR1 and RyR2. They further suggest that five non-conserved amino acids in the C-terminal region flanking the CaM-binding domain have a key role in CaM inhibition of RyR2.  相似文献   

18.
The role of the sequence surrounding M4 in ryanodine receptors (RyR) in membrane association and function was investigated. This sequence contains a basic, 19-amino acid M3/M4 loop, a hydrophobic 44-49 amino acid sequence designated M4 (or M4a/M4b), and a hydrophilic M4/M5 loop. Enhanced green fluorescent protein (EGFP) was inserted into RyR1 and truncated just after the basic sequence, just after M4, within the M4/M5 loop, just before M5 and just after M5. The A52 epitope was inserted into RyR2 and truncated just after M4a. Analysis of these constructs ruled out a M3/M4 transmembrane hairpin and narrowed the region of membrane association to M4a/M4b. EGFP inserted between M4a and M4b in full-length RyR2 was altered conformationally, losing fluorescence and gaining trypsin sensitivity. Although it was accessible to an antibody from the cytosolic side, tryptic fragments were membrane-bound. The expressed protein containing EGFP retained caffeine-induced Ca(2+) release channel function. These results suggest that M4a/M4b either forms a transmembrane hairpin or associates in an unorthodox fashion with the cytosolic leaflet of the membrane, possibly involving the basic M3/M4 loop. The expression of a mutant RyR1, Delta4274-4535, deleted in the sequence surrounding both M3 and M4, restored robust, voltage-gated L-type Ca(2+) currents and Ca(2+) transients in dyspedic myotubes, demonstrating that this sequence is not required for either orthograde (DHPR activation of sarcoplasmic reticulum Ca(2+) release) or retrograde (RyR1 increase in DHPR Ca(2+) channel activity) signals of excitation-contraction coupling. Maximal amplitudes of L-currents and Ca(2+) transients with Delta4274-4535 were larger than with wild-type RyR1, and voltage-gated sarcoplasmic reticulum Ca(2+) release was more sensitive to activation by sarcolemmal voltage sensors. Thus, this region may act as a negative regulatory module that increases the energy barrier for Ca(2+) release channel opening.  相似文献   

19.
A fragment of RyR1 (amino acids 4064-4210) is predicted to fold to at least one lobe of calmodulin and to bind Ca(2+). This fragment of RyR1 (R4064-4210) was subcloned, expressed, refolded, and purified. Consistent with the predicted folding pattern, R4064-4210 was found to bind two molecules of Ca(2+) and undergo a structural change upon binding Ca(2+) that exposes hydrophobic amino acids. R4064-4210 also binds to RyR1, the L-type Ca(2+) channel (Cav(1.1)), and several synthetic calmodulin binding peptides. Both R4064-4210 and a peptide representing the calmodulin-binding region of RyR1 (R3614-3643) alter the Ca(2+) dependence of ((3)H)ryanodine binding to RyR1, suggesting that they may both be interfering with an intramolecular interaction between amino acids 4064-4210 and amino acids 3614-3643 in the native RyR1 to alter or regulate the response of the channel to changes in Ca(2+) concentration. The finding that a domain within RyR1 binds Ca(2+) and interacts with calmodulin-binding motifs may provide insights into the mechanism for calcium- and calmodulin-dependent regulation of this channel and perhaps for its regulation by the L-type Ca(2+) channel.  相似文献   

20.
Ryanodine receptors (RyR) function as Ca(2+) channels that regulate Ca(2+) release from intracellular stores to control a diverse array of cellular processes. The massive cytoplasmic domain of RyR is believed to be responsible for regulating channel function. We investigated interaction between the transmembrane Ca(2+)-releasing pore and a panel of cytoplasmic domains of the human cardiac RyR in living cells. Expression of eGFP-tagged RyR constructs encoding distinct transmembrane topological models profoundly altered intracellular Ca(2+) handling and was refractory to modulation by ryanodine, FKBP12.6 and caffeine. The impact of coexpressing dsRed-tagged cytoplasmic domains of RyR2 on intracellular Ca(2+) phenotype was assessed using confocal microscopy coupled with parallel determination of in situ protein: protein interaction using fluorescence resonance energy transfer (FRET). Dynamic interactions between RyR cytoplasmic and transmembrane domains were mediated by amino acids 3722-4610 (Interacting or "I"-domain) which critically modulated intracellular Ca(2+) handling and restored RyR sensitivity to caffeine activation. These results provide compelling evidence that specific interaction between cytoplasmic and transmembrane domains is an important mechanism in the intrinsic modulation of RyR Ca(2+) release channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号