首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y. enterocolitica translocates virulence proteins, called Yop effectors, into the cytosol of eukaryotic cells. Here we investigated whether Y. enterocolitica could translocate Yops into a range of eukaryotic cells including neurons and insect cells. Y. enterocolitica translocated the hybrid reporter protein YopE-Cya into each of the eukaryotic cell types tested. In addition, Y. enterocolitica was cytotoxic for each of the adherent cell types. Thus we detected no limit to the range of eukaryotic cells into which Y. enterocolitica can translocate Yops. The Yop effectors YopE, YopH and YopT were each cytotoxic for the adherent cell types tested, showing that not only is Y. enterocolitica not selective in its translocation of particular Yop effectors into each cell type, but also that the action of these Yop effectors is not cell type specific. Invasin and/or YadA, two powerful adhesins were required for translocation of Yop into non-phagocytic cells but not for translocation into macrophages. To use the Yersinia translocation system for broad applications, a Y. enterocolitica translocation strain and vector for the delivery of heterologous proteins into eukaryotic cells was constructed. This strain + vector combination lacks the translocated Yop effectors and allows delivery into eukaryotic cells of heterologous proteins fused to the minimal N-terminal secretion/translocation signal of YopE. Using this strategy translocation of a YopE-Diphtheria toxin subunit A hybrid protein into several cell types has been shown.  相似文献   

2.
Yersinia pestis, the causative agent of plague, exports a set of virulence proteins called Yops upon contact with eukaryotic cells. A subset of these Yops is translocated directly into the cytosol of host cells. In this study, a novel protein tag-based reporter system is used to measure the translocation of Yops into cultured eukaryotic cells. The reporter system uses a small bipartite phosphorylatable peptide tag, termed the Elk tag. Translocation of an Elk-tagged protein into eukaryotic cells results in host cell protein kinase-dependent phosphorylation of the tag at a specific serine residue, which can subsequently be detected with phosphospecific antibodies. The YopN, TyeA, SycN, YscB and LcrG proteins function to prevent Yop secretion before host cell contact. The role of these proteins was investigated in the translocation of Elk-tagged YopE (YopE129-Elk) and YopN (YopN293-Elk) into HeLa cells. Y. pestis yopN, tyeA, sycN and yscB deletion mutants showed reduced levels of YopE129-Elk phosphorylation compared with the parent strain, indicating that these mutants translocate reduced amounts of YopE. We also demonstrate that YopN293-Elk is translocated into HeLa cells and that this process is more efficient in a Yersinia yop polymutant strain lacking the six translocated effector Yops. Y. pestis sycN and yscB mutants translocated reduced amounts of YopN293-Elk; however, tyeA and lcrG mutants translocated higher amounts of YopN293-Elk compared with the parent strain. These data suggest that TyeA and LcrG function to suppress the secretion of YopN before host cell contact, whereas SycN and YscB facilitate YopN secretion and subsequent translocation.  相似文献   

3.
A type III secretion-translocation system allows Yersinia adhering at the surface of animal cells to deliver a cocktail of effector Yops (YopH, -O, -P, -E, -M, and -T) into the cytosol of these cells. Residues or codons 1 to 77 contain all the information required for the complete delivery of YopE into the target cell (release from the bacterium and translocation across the eukaryotic cell membrane). Residues or codons 1 to 15 are sufficient for release from the wild-type bacterium under Ca(2+)-chelating conditions but not for delivery into target cells. Residues 15 to 50 comprise the binding domain for SycE, a chaperone specific for YopE that is necessary for release and translocation of full-length YopE. To understand the role of this chaperone, we studied the delivery of YopE-Cya reporter proteins and YopE deletants by polymutant Yersinia devoid of most of the Yop effectors (delta HOPEM and delta THE strains). We first tested YopE-Cya hybrid proteins and YopE proteins deleted of the SycE-binding site. In contrast to wild-type strains, these mutants delivered YopE(15)-Cya as efficiently as YopE(130)-Cya. They were also able to deliver YopE(delta 17-77). SycE was dispensable for these deliveries. These results show that residues or codons 1 to 15 are sufficient for delivery into eukaryotic cells and that there is no specific translocation signal in Yops. However, the fact that the SycE-binding site and SycE were necessary for delivery of YopE by wild-type Yersinia suggests that they could introduce hierarchy among the effectors to be delivered. We then tested a YopE-Cya hybrid and YopE proteins deleted of amino acids 2 to 15 but containing the SycE-binding domain. These constructs were neither released in vitro upon Ca(2+) chelation nor delivered into cells by wild-type or polymutant bacteria, casting doubts on the hypothesis that SycE could be a secretion pilot. Finally, it appeared that residues 50 to 77 are inhibitory to YopE release and that binding of SycE overcomes this inhibitory effect. Removal of this domain allowed in vitro release and delivery in cells in the absence as well as in the presence of SycE.  相似文献   

4.
Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.  相似文献   

5.
Pathogenic yersiniae deliver a number of different effector molecules, which are referred to as Yops, into the cytosol of eukaryotic cells via a type III secretion system. To identify the regions of YopE from Yersinia pseudotuberculosis that are necessary for its translocation across the bacterial and eukaryotic cellular membranes, we constructed a series of hybrid genes which consisted of various amounts of yopE fused to the adenylate cyclase-encoding domain of the cyclolysin gene (cyaA) of Bordetella pertussis. By assaying intact cells for adenylate cyclase activity, we show that a YopE-Cya protein containing just the 11 amino-terminal residues of YopE is efficiently exported to the exterior surface of the bacterial cell. Single amino acid replacements of the first seven YopE residues significantly decreased the amount of reporter protein detected on the cell surface, suggesting that the extreme amino-terminal region of YopE is recognized by the secretion machinery. As has recently been shown for the Y. enterocolitica YopE protein (M.-P. Sory, A. Boland, I. Lambermont, and G. R. Cornelis, Proc. Natl. Acad. Sci. USA 92:11998-12002, 1995), we found that export to the cell surface was not sufficient for YopE-Cya proteins to be delivered into the eukaryotic cytoplasm. For traversing the HeLa cell membrane, at least 49 yopE-encoded residues were required. Replacement of leucine 43 of YopE with glycine severely affected the delivery of the reporter protein into HeLa cells. Surprisingly, export from the bacterial cell was also not sufficient for YopE-Cya proteins to be released from the bacterial cell surface into the culture supernatant. At least 75 residues of YopE were required to detect activity of the corresponding reporter protein in the culture supernatant, suggesting that a release domain exists in this region of YopE. We also show that the chaperone-like protein YerA required at least 75 YopE residues to form a stable complex in vitro with YopE-Cya proteins and, furthermore, that YerA is not required to target YopE-Cya proteins to the secretion complex. Taken together, our results suggest that traversing the bacterial and eukaryotic membranes occurs by separate processes that recognize distinct domains of YopE and that these processes are not dependent on YerA activity.  相似文献   

6.
7.
Yersinia adhering at the surface of eukaryotic cells secrete a set of proteins called Yops. This secretion which occurs via a type III secretion pathway is immediately followed by the injection of some Yops into the cytosol of eukaryotic cells. Translocation of YopE and YopH across the eukaryotic cell membranes requires the presence of the translocators YopB and YopD. YopE and YopH are modular proteins composed of an N-terminal secretion signal, an internalization domain, and an effector domain. Secretion of YopE and YopH requires the presence of the specific cytosolic chaperones SycE and SycH, respectively. In this work, we have mapped the regions of YopE and YopH that are involved in binding of their cognate chaperone. There is only one Syc-binding domain in YopE (residues 15–50) and YopH (residues 20–70). This domain is localized immediately after the secretion signal and it corresponds to the internalization domain. Removal of this bifunctional domain did not affect secretion of YopE and YopH and even suppressed the need for the chaperone in the secretion process. Thus SycE and SycH are not secretion pilots. Instead, we propose that they prevent intrabacterial interaction of YopE and YopH with proteins involved in translocation of these Yops across eukaryotic cell membranes.  相似文献   

8.
Extracellular Yersinia spp. disarm the immune system by injecting the effector Yersinia outer proteins (Yops) into the target cell. Yop secretion is triggered by contact with eukaryotic cells or by Ca2+ chelation. Two proteins, YopN and LcrG, are known to be involved in Yop-secretion control. Here we describe TyeA, a third protein involved in the control of Yop release. Like YopN, TyeA is localized at the bacterial surface. A tyeA knock-out mutant secreted Yops in the presence of Ca2+ and in the absence of eukaryotic cells. Unlike a yopN null mutant, the tyeA mutant was defective for translocation of YopE and YopH, but not YopM, YopO and YopP, into eukaryotic cells. This is the first observation suggesting that Yop effectors can be divided into two sets for delivery into eukaryotic cells. TyeA was found to interact with the translocator YopD and with residues 242-293 of YopN. In contrast with a yopN null mutant, a yopNDelta248-272 mutant was also unable to translocate YopE and YopH. Our results suggest that TyeA forms part of the translocation-control apparatus together with YopD and YopN, and that the interaction of these proteins is required for selective translocation of Yops inside eukaryotic cells.  相似文献   

9.
Extracellular Yersinia disarm the immune system of their host by injecting effector Yop proteins into the cytosol of target cells. Five effectors have been described: YopE, YopH, YpkA/YopO, YopP and YopM. Delivery of these effectors by Yersinia adhering at the cell surface requires other Yops (translocators) including YopB. Effector and translocator Yops are secreted by the type III Ysc secretion apparatus, and some Yops also need a specific cytosolic chaperone, called Syc. In this paper, we describe a new Yop, which we have called YopT (35.5 kDa). Its secretion required an intact Ysc apparatus and SycT (15.0 kDa, pI 4.4), a new chaperone resembling SycE. Infection of macrophages with a Yersinia , producing a hybrid YopT–adenylate cyclase, led to the accumulation of intracellular cAMP, indicating that YopT is delivered into the cytosol of eukaryotic cells. Infection of HeLa cells with a mutant strain devoid of the five known Yop effectors (ΔHOPEM strain) but producing YopT resulted in the alteration of the cell cytoskeleton and the disruption of the actin filament structure. This cytotoxic effect was caused by YopT and dependent on YopB. YopT is thus a new effector Yop and a new bacterial toxin affecting the cytoskeleton of eukaryotic cells.  相似文献   

10.
Pathogenic Yersinia spp. translocate the effectors YopT, YopE, and YopO/YpkA into target cells to inactivate Rho family GTP-binding proteins and block immune responses. Some Yersinia spp. also secrete the Rho protein activator cytotoxic necrotizing factor-Y (CNF-Y), but it has been unclear how the bacteria may benefit from Rho protein activation. We show here that CNF-Y increases Yop translocation in Yersinia enterocolitica-infected cells up to 5-fold. CNF-Y strongly activated RhoA and also delayed in time Rac1 and Cdc42, but when individually expressed, constitutively active mutants of Rac1, but not of RhoA, increased Yop translocation. Consistently, knock-out or knockdown of Rac1 but not of RhoA, -B, or -C inhibited Yersinia effector translocation in CNF-Y-treated and control cells. Activation or knockdown of Cdc42 also affected Yop translocation but much less efficiently than Rac. The increase in Yop translocation induced by CNF-Y was essentially independent of the presence of YopE, YopT, or YopO in the infecting Yersinia strain, indicating that none of the Yops reported to inhibit translocation could reverse the CNF-Y effect. In summary, the CNF-Y activity of Yersinia strongly enhances Yop translocation through activation of Rac.  相似文献   

11.
12.
Viboud GI  Bliska JB 《The EMBO journal》2001,20(19):5373-5382
The bacterial pathogen Yersinia pseudotuberculosis uses type III secretion machinery to translocate Yop effector proteins through host cell plasma membranes. A current model suggests that a type III translocation channel is inserted into the plasma membrane, and if Yops are not present to fill the channel, the channel will form a pore. We examined the possibility that Yops act within the host cell to prevent pore formation. Yop- mutants of Y.pseudotuberculosis were assayed for pore-forming activity in HeLa cells. A YopE- mutant exhibited high levels of pore-forming activity. The GTPase-downregulating function of YopE was required to prevent pore formation. YopE+ bacteria had increased pore-forming activity when HeLa cells expressed activated Rho GTPases. Pore formation by YopE- bacteria required actin polymerization. F-actin was concentrated at sites of contact between HeLa cells and YopE- bacteria. The data suggest that localized actin polymerization, triggered by the type III machinery, results in pore formation in cells infected with YopE- bacteria. Thus, translocated YopE inhibits actin polymerization to prevent membane damage to cells infected with wild-type bacteria.  相似文献   

13.
Yersinia enterocolitica inject toxic proteins (effector Yops) into the cytosol of eukaryotic cells by a mechanism requiring the type III machinery. Previous work mapped a signal sufficient for the targeting of fused reporter proteins to amino acids 1-100 of YopE. Targeting requires the binding of SycE to YopE residues 15-100 in the bacterial cytoplasm. We asked whether SycE functions only to stabilize YopE in the bacterial cytoplasm, or whether the secretion chaperone itself contributes to substrate recognition by the type III machinery. Fusions of glutathione S-transferase to either the N or C terminus of SycE resulted in hybrid proteins that bound YopE but prevented targeting of the export substrate into HeLa cells. As compared with wild-type SycE, glutathione S-transferase-SycE bound and stabilized YopE in the bacterial cytoplasm but failed to release the polypeptide for export by the type III machinery. Thus, it appears that SycE functions to deliver YopE to the type III secretion machinery. A model is presented that accounts for substrate recognition of effector Yops, a group of proteins that do not share amino acid sequence or physical similarities.  相似文献   

14.
Pathogenic Yersiniae adhere to and kill macrophages by targeting some of their Yop proteins into the eukaryotic cytosol. There is debate about whether YopE targeting proceeds as a direct translocation of polypeptide between cells or in two distinct steps, each requiring specific signals for YopE secretion across the bacterial envelope and for translocation into the eukaryotic cytosol. Here, we used the selective solubilization of the eukaryotic plasma membrane with digitonin to measure Yop targeting during Yersinia infections of HeLa cells. YopE, YopH, YopM and YopN were found in the eukaryotic cytosol but not in the extracellular medium. When bound to SycE chaperone in the Yersinia cytoplasm, YopE residues 1–100 are necessary and sufficient for the targeting of hybrid neomycin phosphotransferase. Electron microscopic analysis failed to detect an extracellular intermediate of YopE targeting, suggesting a one-step translocation mechanism.  相似文献   

15.
16.
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.  相似文献   

17.
Type III secretion systems deliver effector proteins from Gram‐negative bacterial pathogens into host cells, where they disarm host defences, allowing the pathogens to establish infection. Although Yersinia pseudotuberculosis delivers its effector proteins, called Yops, into numerous cell types grown in culture, we show that during infection Y. pseudotuberculosis selectively targets Yops to professional phagocytes in Peyer's patches, mesenteric lymph nodes and spleen, although it colocalizes with B and T cells as well as professional phagocytes. Strikingly, in the absence of neutrophils, the number of cells with translocated Yops was significantly reduced although the bacterial loads were similar, indicating that Y. pseudotuberculosis did not arbitrarily deliver Yops to the available cells. Using isolated splenocytes, selective binding and selective targeting to professional phagocytes when bacteria were limiting was also observed, indicating that tissue architecture was not required for the tropism for professional phagocytes. In isolated splenocytes, YadA and Invasin increased the number of all cells types with translocated Yops, but professional phagocytes were still preferentially translocated with Yops in the absence of these adhesins. Together these results indicate that Y. pseudotuberculosis discriminates among cells it encounters during infection and selectively delivers Yops to phagocytes while refraining from translocation to other cell types.  相似文献   

18.
Type III secretion-dependent translocation of Yop (Yersinia outer proteins) effector proteins into host cells is an essential virulence mechanism common to the pathogenic Yersinia species. One unique feature of this mechanism is the polarized secretion of Yops, i.e. Yops are only secreted at the site of contact with the host cell and not to the surrounding medium. In vitro, secretion occurs in Ca2+-depleted media, a condition believed to somehow mimic cell contact. Three proteins, YopN, LcrG and TyeA have been suggested to control secretion and mutating any of these genes results in constitutive secretion. In addition, in Y. enterocolitica TyeA has been implied to be specifically required for delivery of a subset of Yop effectors into infected cells. In this work we have investigated the role of TyeA in secretion and translocation of Yop effectors by Y. pseudotuberculosis. An in frame deletion mutant of tyeA was found to be temperature-sensitive for growth and this phenotype correlated to a lowered expression of the negative regulatory element LcrQ. In medium containing Ca2+, Yop expression was somewhat elevated compared to the wild-type strain and low levels of Yop secretion was also seen. Somewhat surprisingly, expression and secretion of Yops was lower than for the wild-type strain when the tyeA mutant was grown in Ca2+-depleted medium. Translocation of YopE, YopH, YopJ and YopM into infected HeLa cells was significantly lower in comparison with the isogenic wild-type strain and Yop proteins could also be recovered in the tissue culture medium. This indicated that the tyeA mutant had lost the ability to translocate Yop proteins by a polarized mechanism. In order to exclude that the defect in translocation seen in the tyeA mutant was a result of lowered expression/secretion of Yops, a double lcrQ/tyeA mutant was constructed. This strain was de-repressed for Yop expression and secretion but was still impaired for translocation of both YopE and YopM. In addition, the low level of YopE translocation in the tyeA mutant was independent of the YopE chaperone YerA/SycE. TyeA was found to localize to the cytoplasm of the bacterium and we were unable to find any evidence that TyeA was secreted or surface located. From our studies in Y. pseudotuberculosis we conclude that TyeA is involved in regulation of Yop expression and required for polarized delivery of Yop effectors in general and is not as suggested in Y. enterocolitica directly required for translocation of a subset of Yop effectors.  相似文献   

19.
Virulent bacteria of the genera Yersinia, Shigella and Salmonella secrete a number of virulence determinants, Yops, Ipas and Sips respectively, by a type III secretion pathway. The IpaB protein of Shigella flexneri was expressed in Yersinia pseudotuberculosis and found to be secreted under the same conditions required for Yop secretion. Likewise, YopE was secreted by the wild-type strain LT2 of Salmonella typhimurium, but YopE was not secreted by the isogenic invA mutant. Secretion of both IpaB and YopE required their respective chaperones, IpgC and YerA. In addition, yopE-containing S. typhimurium expressed a YopE-mediated cytotoxicity on cultured HeLa cells. YopE was detected in the cytosol of the infected HeLa cells and the amount of translocated YopE correlated with the degree of cytotoxicity. Both translocation and cytotoxicity were prevented by the addition of gentamicin. Treatment of HeLa cells with cytochalasin D prior to infection prevented internalization of bacteria, but translocation of YopE was still observed. These results favour the hypothesis that YopE is translocated through the plasma membrane by surface-located bacteria. We propose that virulent Salmonella and Shigella deliver virulence effector molecules into the target cell through the utilization of a functionally conserved secretion/translocation machinery similar to that shown for Yersinia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号