首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TGF-beta superfamily of growth factors is known to transmit signals to the nucleus mainly through the Smads, intracellular signaling components that are highly conserved from nematodes to humans. The signaling activity of the Smads is regulated by their ligand-stimulated phosphorylation through Ser/Thr kinase receptors. Here, to examine the in vivo role of BMP, we investigated the spatio-temporal activation of BMP-regulated signals during Xenopus development, using a polyclonal antibody that specifically recognizes the phosphorylated form of BMP-regulated Smads. BMP signaling was observed uniformly in embryos as early as stage 7, but was restricted to the ventral side of the embryo at the late blastula stage, supporting the proposed role of BMP4 as a ventralizing factor in Xenopus embryos. In addition, localized staining was detected in several developing organs, consistent with the predicted function of BMP family members in organogenesis.  相似文献   

2.
Visualization of endogenous BMP signaling during Xenopus development   总被引:1,自引:0,他引:1  
Abstract The TGF-β superfamily of growth factors is known to transmit signals to the nucleus mainly through the Smads, intracellular signaling components that are highly conserved from nematodes to humans. The signaling activity of the Smads is regulated by their ligand-stimulated phosphorylation through Ser/Thr kinase receptors. Here, to examine the in vivo role of BMP, we investigated the spatio-temporal activation of BMP-regulated signals during Xenopus development, using a polyclonal antibody that specifically recognizes the phosphorylated form of BMP-regulated Smads. BMP signaling was observed uniformly in embryos as early as stage 7, but was restricted to the ventral side of the embryo at the late blastula stage, supporting the proposed role of BMP4 as a ventralizing factor in Xenopus embryos. In addition, localized staining was detected in several developing organs, consistent with the predicted function of BMP family members in organogenesis.  相似文献   

3.
4.
The diencephalon is the caudal part of the forebrain and is organized into easily identifiable clusters of neurons called nuclei. Neurons in different nuclei project to discrete brain regions. Thus precise organization of the nuclei during forebrain development is necessary to build accurate neural circuits. How diencephalic development is regulated is poorly understood. BMP signaling participates in central nervous system patterning and development at many levels along the neural axis. Based on their expression we hypothesized BMPs play a role in diencephalic development. To test this hypothesis, we electroporated constitutively active and dominant negative forms of type I BMP receptors (Bmpr1a and Bmpr1b) into the embryonic chick forebrain. Ectopic induction of BMP signaling through constitutively active forms of the type I BMP receptors perturbs the normal gene expression patterns in the diencephalon and increases apoptotic cell death. These defects lead to disorganization of the diencephalic nuclei, suggesting BMP signaling is sufficient to modify diencephalic development. Loss-of-function studies, using dominant negative forms of Bmpr1a and Bmpr1b, indicate type I BMP receptors are necessary for normal eye and craniofacial development. However, they do not appear to be required for normal diencephalic development. In summary, our data indicate that while not necessary, BMP signaling via Bmpr1a and Bmpr1b, is sufficient to modify nuclear organization in the chick diencephalon.  相似文献   

5.
BMP I type receptor inhibitor can selectively inhibit BMP/Smad signaling pathways, mainly by inhibiting the BMP I type receptor activity to prevent phosphorylation of Smad1, Smad5 and Smad9. The aim of the present study was to explore the effects of mouse ovarian granulosa cell function and related gene expression by suppressing BMP/Smad signaling pathway with LDN-193189(A type of BMP I type receptor inhibitor). In this study, we cultivate the original generation of mouse ovarian granular cells then collect cells and cell culture medium after treatment. Cellular localization and expression of Smad9 and P-smad9 proteins was studied by immunofluorescence (IF) in the ovarian granulosa cells of mouse; Related genes mRNA and proteins expression was checked by QRT-PCR and Western blot; Detected the concentration of related hormones by using ELISA kit; finally, the growth of the cells was analyzed by plotting cell growth curve with CCK-8 assay. The results indicate that, suppression of BMP/Smad signaling pathway can inhibit the expression of LHR and FSHR, inhibit cell proliferation and decrease E2 secretion, the mechanism of action maybe reduce the expression of smad9, at the same time, we found that the feedback regulation of smad9 may affect the expression of FSHR and cell proliferation.  相似文献   

6.
Notch and bone morphogenetic protein signaling pathways are important for cellular differentiation, and both have been implicated in vascular development. In many cases the two pathways act similarly, but antagonistic effects have also been reported. The underlying mechanisms and whether this is caused by an interplay between Notch and BMP signaling is unknown. Here we report that expression of the Notch target gene, Herp2, is synergistically induced upon activation of Notch and BMP receptor signaling pathways in endothelial cells. The synergy is mediated via RBP-Jkappa/CBF-1 and GC-rich palindromic sites in the Herp2 promoter, as well as via interactions between the Notch intracellular domain and Smad that are stabilized by p/CAF. Activated Notch and its downstream effector Herp2 were found to inhibit endothelial cell (EC) migration. In contrast, BMP via upregulation of Id1 expression has been reported to promote EC migration. Interestingly, Herp2 was found to antagonize BMP receptor/Id1-induced migration by inhibiting Id1 expression. Our results support the notion that Herp2 functions as a critical switch downstream of Notch and BMP receptor signaling pathways in ECs.  相似文献   

7.
8.
9.
The sensitivity of the crossveins of the Drosophila wing to reductions in BMP signaling provides a valuable system for characterizing members of this signaling pathway. We demonstrate here two reasons for that sensitivity. First, the initial stage of posterior crossvein development depends on BMP signaling but is independent of EGF signaling. This is the opposite of the longitudinal veins, which rely of EGF signaling for their initial specification. Second, BMP signaling in the posterior crossvein depends on Decapentaplegic (Dpp) at a stage when it is being produced in the longitudinal veins. Thus, the posterior crossvein will be especially vulnerable to reductions in the levels or range of Dpp signaling. We investigated the roles of the BMP receptor Thickveins (Tkv) and the BMP inhibitor Short gastrulation (Sog) in allowing this long-range signaling. Expression of both is downregulated in the developing posterior crossvein. The Tkv downregulation depends on BMP signaling and may provide a positive feedback by allowing the spread of Dpp. The Sog downregulation is independent of BMP signaling; Sog misexpression experiments indicate that this prepattern is essential for posterior crossvein development. However, this requirement can be overridden by co-misexpression of the BMP agonist Cv-2, indicating the presence of as yet unknown cues; we discuss possible candidates.  相似文献   

10.
BMP signaling in skeletal development   总被引:16,自引:0,他引:16  
Development of the vertebrate skeleton, a complex biological event that includes diverse processes such as formation of mesenchymal condensations at the sites of future skeletal elements, osteoblast and chondrocyte differentiation, and three dimensional patterning, is regulated by many growth factors. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, play a pivotal role in the signaling network and are involved in nearly all processes associated with skeletal morphogenesis. BMP signals are transduced from the plasma membrane receptors to the nucleus through both Smad pathway and non-Smad pathways, and regulated by many extracellular and intercellular proteins that interact with BMPs or components of the BMP signaling pathways. To gain a better understanding of the molecular mechanisms underlying the role of BMP in early skeletal development, it is necessary to elucidate the BMP signaling transduction pathways in chondrocytes and osteoblasts. The major objective of this review was to summarize BMP signaling pathways in the context of craniofacial, axial, and limb development. In particular, this discourse will focus on recent advances of the role of different ligands, receptors, Smads, and BMP regulators in osteoblast and chondrocyte differentiation during embryonic development.  相似文献   

11.
12.
Extracellular regulation of growth factor signaling is a key event for embryonic patterning. Heparan sulfate proteoglycans (HSPG) are among the molecules that regulate this signaling during embryonic development. Here we study the function of syndecan1 (Syn1), a cell-surface HSPG expressed in the non-neural ectoderm during early development of Xenopus embryos. Overexpression of Xenopus Syn1 (xSyn1) mRNA is sufficient to reduce BMP signaling, induce chordin expression and rescue dorso-ventral patterning in ventralized embryos. Experiments using chordin morpholinos established that xSyn1 mRNA can inhibit BMP signaling in the absence of chordin. Knockdown of xSyn1 resulted in a reduction of BMP signaling and expansion of the neural plate with the concomitant reduction of the non-neural ectoderm. Overexpression of xSyn1 mRNA in xSyn1 morphant embryos resulted in a biphasic effect, with BMP being inhibited at high concentrations and activated at low concentrations of xSyn1. Interestingly, the function of xSyn1 on dorso-ventral patterning and BMP signaling is specific for this HSPG. In summary, we report that xSyn1 regulates dorso-ventral patterning of the ectoderm through modulation of BMP signaling.  相似文献   

13.
14.
15.
《Autophagy》2013,9(2):356-371
Under conditions of nutrient shortage autophagy is the primary cellular mechanism ensuring availability of substrates for continuous biosynthesis. Subjecting cells to starvation or rapamycin efficiently induces autophagy by inhibiting the MTOR signaling pathway triggering increased autophagic flux. To elucidate the regulation of early signaling events upon autophagy induction, we applied quantitative phosphoproteomics characterizing the temporal phosphorylation dynamics after starvation and rapamycin treatment. We obtained a comprehensive atlas of phosphorylation kinetics within the first 30 min upon induction of autophagy with both treatments affecting widely different cellular processes. The identification of dynamic phosphorylation already after 2 min demonstrates that the earliest events in autophagy signaling occur rapidly after induction. The data was subjected to extensive bioinformatics analysis revealing regulated phosphorylation sites on proteins involved in a wide range of cellular processes and an impact of the treatments on the kinome. To approach the potential function of the identified phosphorylation sites we performed a screen for MAP1LC3-interacting proteins and identified a group of binding partners exhibiting dynamic phosphorylation patterns. The data presented here provide a valuable resource on phosphorylation events underlying early autophagy induction.  相似文献   

16.
BMP4 substitutes for loss of BMP7 during kidney development   总被引:3,自引:0,他引:3  
Functional inactivation of divergent bone morphogenetic proteins (BMPs) causes discrete disturbances during mouse development. BMP4-deficient embryos display mesodermal patterning defects at early post-implantation stages, whereas loss of BMP7 selectively disrupts kidney and eye morphogenesis. Whether these distinct phenotypes simply reflect differences in expression domains, or alternatively intrinsic differences in the signaling properties of these ligands remains unknown. To address this issue, we created embryos exclusively expressing BMP4 under control of the BMP7 locus. Surprisingly, this novel knock-in allele efficiently rescues kidney development. These results demonstrate unequivocally that these structurally divergent BMP family members, sharing only minimal sequence similarity can function interchangeably to activate all the essential signaling pathways for growth and morphogenesis of the kidney. Thus, we conclude that partially overlapping expression patterns of BMPs serve to modulate strength of BMP signaling rather than create discrete fields of ligands with intrinsically different signaling properties.  相似文献   

17.
18.
Axial patterning of the developing eye is critically important for proper axonal pathfinding as well as for key morphogenetic events, such as closure of the optic fissure. The dorsal retina is initially specified by the actions of Bone Morphogenetic Protein (BMP) signaling, with such identity subsequently maintained by the Wnt-β catenin pathway. Using zebrafish as a model system, we demonstrate that Secreted frizzled-related protein 1a (Sfrp1a) and Sfrp5 work cooperatively to pattern the retina along the dorso-ventral axis. Sfrp1a/5 depleted embryos display a reduction in dorsal marker gene expression that is consistent with defects in BMP- and Wnt-dependent dorsal retina identity. In accord with this finding, we observe a marked reduction in transgenic reporters of BMP and Wnt signaling within the dorsal retina of Sfrp1a/5 depleted embryos. In contrast to studies in which canonical Wnt signaling is blocked, we note an increase in BMP ligand expression in Sfrp1a/5 depleted embryos, a phenotype similar to that seen in embryos with inhibited BMP signaling. Overexpression of a low dose of sfrp5 mRNA causes an increase in dorsal retina marker gene expression. We propose a model in which Sfrp proteins function as facilitators of both BMP and Wnt signaling within the dorsal retina.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号