首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrolyte transport across rabbit late proximal colon in vitro   总被引:1,自引:0,他引:1  
The second part of rabbit proximal colon was investigated in vitro under short circuit conditions. Unidirectional sodium and chloride fluxes were measured during the soft faeces period and during the hard faeces period. Rabbit late proximal colon has a potential difference (psi mS) of 4 mV, a tissue conductance (GT) of 10-11 mS/cm2 and a short circuit current (Isc) of 1.5 mueq/cm2 X hr. Under control conditions sodium (2.65 mueq/cm2 X hr) and chloride (0.67 mueq/cm2 X hr) are absorbed. Ouabain abolished psi ms,Isc and the net sodium flux totally, whereas 0.1 mM amiloride only slightly decreased the net sodium flux. No differences in electrical properties and Na,Cl-fluxes were found between the faeces periods. Removal of sodium abolished psi ms and Isc totally, and a high potassium solution depolarized the preparation (psi ms = 0). A linear current-voltage relation characterizes the tissue as an ohmic resistor between -40 and +50 mV, and reveals a slope conductance of 14 mS/cm2 under KCl conditions. We conclude that the transport functions under in vitro conditions differ markedly from the in vivo situation, and that the diurnal differences of electrolyte transport in vivo occur mainly by the involvement of ionic gradients.  相似文献   

2.
1. Ionic fluxes of sodium and chloride across lizard colon mucosa were measured and compared with the electrical characteristics of the tissue under voltage-clamped conditions. 2. In a Ringer-bicarbonate solution there was both a net sodium flux (JNanet) and a net chloride flux (JClnet) from mucosa to serosa. The net flux residual (JR) was near zero, indicating that net sodium and chloride transport is the result of an electrically neutral transport mechanism. 3. In the presence of sodium, the net chloride flux was abolished and the short-circuit current (Isc) and the electrical potential difference (PD) were unchanged. In the absence of chloride the net sodium flux was abolished and the short-circuit current and electrical potential difference were not modified. 4. From an analysis of the effects of the inhibitors, furosemide, amiloride and disulfonic stilbene (DIDS), a plausible model was developed to explain the characteristics of sodium and chloride absorption.  相似文献   

3.
Effect of aldosterone on 86Rb fluxes in cultured kidney cells (A6)   总被引:1,自引:0,他引:1  
This study was designed to evaluate the relative contributions of hormone induced changes in active and passive K+ transport in an epithelial cell line in continuous culture derived from toad kidney (A6) using 86Rb as a tracer for measuring unidirectional K+ fluxes. The effects of 24 h exposure to aldosterone (A) and aldosterone plus insulin (A+I) on unidirectional K+ fluxes were evaluated under short-circuited conditions and under open circuit conditions. In epithelia exposed to A, a small but significant amount of active K+ secretion was found, although it was not significantly greater than in control epithelia. The bidirectional fluxes in both A and A+I treated epithelia, under short-circuited conditions, increased by a similar amount over control values indicating an increase in apparent permeability of passive transepithelial K+ transport. Under open circuit conditions, A stimulated net K+ transport by about 5-fold over controls. The increase in K+ secretion produced by A under open circuit conditions could be explained by the combined effects of an increase in transepithelial K+ permeability and an increase in the transepithelial electrical potential difference (PD). The presence of I produced no additional effects to that of A on K+ transport under the conditions used in this study. It is concluded that the substantial increase in K+ secretion induced in A6 cells by 24 h exposure to A is primarily passive in nature. It is possible that the changes in both PD and transepithelial K+ permeability, which can account for the observed increase in K+ secretion, are secondary to the stimulation of active Na+ transport.  相似文献   

4.
Cartilage exhibits a swelling and shrinking behaviour that influences the function of the cells inside the tissue. This behaviour is caused by mechanical, chemical and electrical loads. It is described by the electrochemomechanical mixture theory, in which the tissue is represented by four components: a charged porous solid, a fluid, cations and anions. By distinguishing between the cations and anions, electrical phenomena can be modelled. This mixture theory is verified by fitting the deformations and the electrical potentials in a uniaxial confined swelling and compression experiment to a mixed finite element simulation. The fitted stiffness, permeability, diffusion coefficients, and osmotic coefficients are in the same range as reported in literature.  相似文献   

5.
Hemorrhagic transformation is a major complication associated with tissue plasminogen activator (tPA) therapy for ischemic stroke. We studied the effect of tPA on the blood–brain barrier (BBB) function with our in vitro monolayer model generated using rat brain microvascular endothelial cells subjected either to normoxia or to hypoxia/reoxygenation (H/R) with or without the administration of tPA. The barrier function was evaluated by the transendothelial electrical resistance (TEER), the permeability of sodium fluorescein and Evans’ blue-albumin (EBA), and the uptake of lucifer yellow (LY). The permeability of sodium fluorescein and EBA was used as an index of paracellular and transcellular transport, respectively. The administration of tPA increased the permeability of EBA and the uptake of LY under normoxia. It enhanced the increase in the permeability of both sodium fluorescein and EBA, the decrease in the TEER, and the disruption in the expression of ZO-1 under H/R conditions. Administration of tPA could cause an increase in the transcellular transport under normoxia, and both the transcellular and paracellular transport of the BBB under H/R conditions in vitro. Even in humans, tPA may lead to an opening of the BBB under non-ischemic conditions and have an additional effect on the ischemia-induced BBB disruption.  相似文献   

6.
The transport of ions from one side to the other of the continuous sheet of cells that constitutes an epithelium is most easily explored with the chambered preparation, in which the tissue is maintained between two bathing solutions of known composition. The chamber design must allow for the biological requirements of the tissue (such as oxygenation) as well as permit the electrical and/or chemical measurements desired. Methods for measuring electrical potential difference, short circuit current and tissue resistance are discussed, and consideration is given to the meaning of the numbers obtained in relation to the experimental procedure.  相似文献   

7.
8.
Electrical Impedance of Isolated Amnion   总被引:1,自引:0,他引:1       下载免费PDF全文
The electrical impedance of the guinea pig amniotic membrane was measured, under standardized conditions, over the frequency range of 20 to 7000 cycles/second. This impedance can be represented analytically by a simple frequency-dependent function which is precisely of the form of the Debye relaxation equation. The observed data exhibit a broad dispersion centered at a frequency of 1050 cycles/second and a narrow distribution of time constants centered about 152 microseconds, both effects being due to the polydisperse nature of amniotic tissue. If the narrow time-constant distribution is approximated by a single time constant, amnion impedance can be simulated by a simple electrical circuit of frequency-independent elements. The Maxwell-Wagner interfacial treatment, although successfully adapted for cell suspensions, is shown to lose its quantitative significance in the case of the tightly structured amnion. In addition, determinations were made on the chemical composition of amniotic fluid, fetal blood and urine, and maternal blood and urine; the DC potential across the amniotic membrane was also measured.  相似文献   

9.
The mechanism of axonal conduction block induced by ultra-high frequency (≥20 kHz) biphasic electrical current was investigated using a lumped circuit model of the amphibian myelinated axon based on Frankenhaeuser-Huxley (FH) equations. The ultra-high frequency stimulation produces constant activation of both sodium and potassium channels at the axonal node under the block electrode causing the axonal conduction block. This blocking mechanism is different from the mechanism when the stimulation frequency is between 4 kHz and 10 kHz, where only the potassium channel is constantly activated. The minimal stimulation intensity required to induce a conduction block increases as the stimulation frequency increases. The results from this simulation study are useful to guide future animal experiments to reveal the different mechanisms underlying nerve conduction block induced by high-frequency biphasic electrical current.  相似文献   

10.
Isolated frog skin, mounted in a Ussing apparatus, was investigated electrophysiologically. Application of amiloride, an inhibitor of sodium ion transport, and bumetanide, known to block the transport of chloride ions, revealed the effect of these ions on PD, both under control conditions and following mechanical stimulation. Under control conditions, mechanical stimulation of the skin caused hyperpolarization, i.e. a transient increase in the electrical potential difference. Preincubation in the presence of amiloride, or amiloride plus bumetanide, brought about both a decrease in electrical potential and an inhibition of the reaction upon stimulation. On the other hand, incubation with bumetanide resulted in a decrease in electrical potential, but did not affect the skin reaction after mechanical stimulation. The above results indicate that hyperpolarization of the frog skin following mechanical stimulation is caused by enhanced transepithelial transport of sodium ions which, in turn, is induced by stimulation of sensory receptors.  相似文献   

11.
The relationship between active sodium transport and oxygen consumption was investigated in toad urinary bladder exposed to identical sodium-Ringer's solution at each surface, while controlling the transepithelial electrical potential difference delta phi. Rates of sodium transport and oxygen consumption were measured simultaneously, both in the short-circuited state (delta phi = 0) and when delta phi was varied. Under short-circuit conditions, when the rates of active sodium transport changed spontaneously or were depressed with amiloride, the ratio of active sodium transport to the estimated suprabasal oxygen consumption Na/O2 was constant for each tissue, but varied among different tissues. Only when delta phi was varied did the ratio Na+/O2 change with the rate of active sodium transport; under these circumstances dNa+/dO2 was constant but exceeded the ratio measured at short-circuit [(Na+/O2)delta phi = 0[. This suggests that coupling between transport and metabolism is incomplete. The results are analyzed according to the principles of nonequilibrium thermodynamics, and intepreted in terms of a simple model of the transepithelial sodium transport system.  相似文献   

12.
The radiation-inactivation size (RIS) of the rat renal brush-border membrane sodium/d-glucose cotransporter was estimated from the loss of transport activity in irradiated membrane vesicles. The RIS depended on the electrochemical conditions present when measuring transport activity. A RIS of 294±40 kDa was obtained when transport was measured in the presence of a sodium electrochemical gradient. Under sodium equilibrium conditions, the RIS was 84±25 kDa in the presence of a glucose gradient, and 92±20 kDa in its absence. In the absence of a sodium gradient, but in the presence of an electrical potential gradient, the RIS increased to 225±49 kDa. The 294 kDa result supports earlier suggestions that the Na+ gradient-dependent glucose transport activity is mediated by a tetramer. Individual monomers appear, however, to carry out glucose transport under equilibrium exchange conditions or when a glucose gradient serves as the only driving force. The electrical potential gradient-driven glucose transport RIS appears to involve three functional subunits.  相似文献   

13.
1. Extracellular single unit recordings with glass microelectrodes in the central nervous system of insects display action potentials of variable amplitude, polarity and time course. This phenomenon is due to capacitive influences at the electrode in contact with the tissue. This is demonstrated by an electrical model circuit simulating extracellular recording conditions. 2. Extracellularly recorded potentials often are very similar to intracellularly recorded ones. Criteria for the decision whether the electrode is intracellularly or not are discussed. 3. Action potentials and slow potentials were recorded simultaneously in the acoustic neuropiles of Locusta. Since slow potentials may not only be distorted by capacitive properties of both the tissue and the electrode, but also are influenced by the anatomical organization of the nervous tissue, their interpretation is ambiguous.  相似文献   

14.
Electrical circuit analysis was used to study the structural development of occluding junctions (OJs) in cultured monolayers composed to T84 cells. The magnitude of the increments in transepithelial resistance predicted by such analysis was compared with the magnitude of the measured increments in resistance. Confluent sheets of epithelial cells were formed after cells were plated at high density on collagen-coated filters. Using Claude's OJ strand count-resistance hypothesis (1978, J. Membr. Biol. 39:219-232), electrical circuit analysis of histograms describing OJ strand count distribution at different time points after plating predicted that junctional resistance should rise in a proportion of 1:21:50 from 18 h to 2 d to 5 d. This reasonably paralleled the degree of rise in transepithelial resistance over this period, which was 1:29:59. The ability to predict the observed resistance rise was eliminated if only mean strand counts were analyzed or if electrical circuit analysis of OJ strand counts were performed using an OJ strand count-resistance relationship substantially different from that proposed by Claude. Measurements of unidirectional fluxes of inulin, mannitol, and sodium indicated that restriction of transjunctional permeability accounted for the observed resistance rise, and that T84 junctional strands have finite permeability to molecules with radii less than or equal to 3.6 A but are essentially impermeable to molecules with radii greater than or equal to 15 A. The results suggest that general correlates between OJ structure and OJ ability to resist passive ion flow do exist in T84 monolayers. The study also suggests that such correlates can be obtained only if OJ structural data are analyzed as an electrical circuit composed of parallel resistors.  相似文献   

15.
We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logic.  相似文献   

16.
Abstract— The uptake of radioactive leucine by incubated neocortex slices was found to be increased by electrical stimulation, yielding a higher content of radioactive amino acid per g fresh weight of tissue which was maintained for prolonged periods of stimulation. The increased tissue content may be associated with tissue swelling found on electrical stimulation, but the additional amino acid uptake was by an active process rather than by passive diffusion. Additions of valine (2.5–10 m m ) or tryptophan (1 m m ) to the incubation medium was found to depress the tissue leucine content. Decreasing the tissue free leucine content by incubating slices in medium containing 5 m m -valine was found to decrease the incorporation of leucine and lysine into tissue protein, indicating that under these conditions tissue free amino acid becomes rate limiting for amino acid incorporation into protein. By analogy with the properties of cerebral tissue in oitro it is suggested that electrical activity in vivo may cause localized increases in free amino acid concentration which may serve to regulate protein synthesis in conditions where the concentration of free amino acids are rate limiting.  相似文献   

17.
Experiments by others have used isolated cell or bilayer membrane preparations to study the dramatic phenomena associated with electroporation. The present study observes electroporation behavior in an intact tissue. Viable samples of frog skin (Rana pipiens) were exposed to short electrical pulses of varying width and magnitude under "charge injection" conditions. After a pulse, the transtissue potential decayed with two distinct time constants, one short (tau approximately 0.3 ms) and the other longer (tau L approximately 2 ms). Above thresholds for the pulse magnitude and for the pulse width tau L decreased significantly, with progressively smaller tau L as the pulse magnitude and width increased. The postpulse potential, delta Utissue (t), and resistance, Rtissue, also decreased progressively. The tissue subsequently recovered to its original resistance and open circuit potential, delta U tissue,oc, within 2-3 min after a pulse. At that time another pulse experiment could be carried out, demonstrating repeatability and reversibility. No significant permanent changes in Rtissue and delta Utissue,oc were found. This is interpreted as avoidance of significant tissue damage. Taken together, these dramatic phenomena are characteristic of the reversible electrical breakdown previously observed in charge injection experiments with artificial planar bilayer membranes and with isolated cell membranes by similar very short pulses. The present experiments therefore demonstrate that electroporation can be repeatedly caused and observed in a viable tissue without apparent damage.  相似文献   

18.
T N Solie  C Yuncker 《Life sciences》1978,22(21):1907-1919
The antitumor, antibiotic, adriamycin stimulates the net transport of sodium ions across frog skin epithelium under short circuit conditions. This stimulation is largely independent of Ca++ concentration in the media or of previous treatment of the epithelium with amiloride, ouabain, and vasopressin. We believe adriamycin induces changes in membrane permeability to sodium ions and that such changes may explain, in part, the cardiotoxicity of this drug.  相似文献   

19.
Effects of different conditions of environmental lighting on the appearance of the muricidal behaviour in male Wistar rats have been studied. The animals were kept under different conditions of environmental lighting: 1) natural day light alternated with the dark of the night; 2) sodium, continuous light emitted by a sodium steam lamp; 3) neon, continuous light emitted by fluorescent neon tubes. The continuous sodium steam light increased the percentage of animals becoming muricide when compared to animals bred in a natural environment with a normal succession of day-night lighting. On the contrary, this percentage decreased if the rats of the same group are exposed to continuous light emitted by fluorescent neon tubes. As the exposure of rats to an environment under continuous light causes a reduction of the cerebral content of serotonin, the muricidal behaviour provoked in naturally non-muricide rats by this type of lighting could be related to this depletion.  相似文献   

20.
Methylobacterium rhodesianum MB 126, a pink-pigmented facultatively methylotrophic bacterium that uses that serine pathway for the assimilation of reduced C1 compounds, is able to produce poly-3-hydroxybutyrate (PHB) under certain limitation conditions. Mutants of this bacterium, which were isolated after the treatment with sodium nitrite, are impaired in their ability to synthesize PHB, but produce another polymer in addition to PHB, namely an exopolysaccharide (EPS). This paper attempts to explain this surprising behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号