首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, sensitive, dried gel DNA hybridization method for detection of Listeria monocytogenes DNA fragments is described. DNA samples were fractionated on an agarose gel. The gel was then denatured in NaOH-NaCl and neutralized in Tris-NaCl. The resulting agarose gel was dried and hybridized with 32P-labelled DNA probe. No transfer to nitrocellulose membranes was used.  相似文献   

2.
3.
The use of agarose blocks containing embedded DNA improves the PCR amplification from templates naturally contaminated with polysaccharides or humic acids, two powerful PCR inhibitors. Presumably, the difference in size between the DNA macromolecules and these contaminants allows their effective removal from the agarose blocks by diffusion during the washing steps, whereas genomic DNA remains trapped within them. In addition, agarose-embedded DNA can be directly used for PCR since low melting point agarose does not interfere with the reaction. This simple and inexpensive method is also convenient for genomic DNAs extracted by other procedures, and it is potentially useful for samples containing other kinds of soluble inhibitors, overcoming this important problem of current amplification techniques.  相似文献   

4.
Oriented agarose gels were prepared by applying an electric field to molten agarose while it was solidifying. Immediately afterwards, DNA samples were applied to the gel and electrophoresed in a constant unidirectional electric field. Regardless of whether the orienting field was applied parallel or perpendicular to the eventual direction of electrophoresis, the mobilities of linear and supercoiled DNA molecules were either faster (80% of the time) or slower (20% of the time) than observed in control, unoriented gels run simultaneously. The difference in mobility in the oriented gel (whether faster or slower) usually increased with increasing DNA molecular weight and increasing voltage applied to orient the agarose matrix. In perpendicularly oriented gels linear DNA fragments traveled in lanes skewed toward the side of the gel; supercoiled DNA molecules traveled in straight lanes. If the orienting voltage was applied parallel to the direction of electrophoresis, both linear and supercoiled DNA molecules migrated in straight lanes. These effects were observed in gels cast from different types of agarose, using various agarose concentrations and two different running buffers, and were observed both with and without ethidium bromide incorporated in the gel. Similar results were observed if the agarose was allowed to solidify first, and the orienting electric field was then applied to the gel for several hours before the DNA samples were added and electrophoresed. The results suggest that the agarose matrix can be oriented by electric fields applied to the gel before and probably during electrophoresis, and that orientation of the matrix affects the mobility and direction of migration of DNA molecules. The skewed lanes observed in the perpendicularly oriented gels suggest that pores or channels can be created in the matrix by application of an electric field. The oriented matrix becomes randomized with time, because DNA fragments in oriented and unoriented gels migrated in straight lanes with identical velocities 24 hours later.  相似文献   

5.
We have made a significant improvement in the electroelution device, Elutrap (Schleicher and Schuell) by substituting an agarose gel barrier, which is made from 0.6% agarose (SeaKem GTG; FMC Corporation), into the elution chamber in place of the manufacturer specified BT2 membrane. This modification substantially increases the DNA recovery from agarose gels, even in samples containing less than 1 microgram of DNA, and shortens elution times particularly for large sizes of DNA (greater than 4.4 kbp). Additionally, the gel barrier provides a reproducible quantity and quality of DNA recovery. The high quality of the eluted DNA using the modified Elutrap makes this system suitable for further DNA manipulations.  相似文献   

6.
Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb1. Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits2. During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel''s molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight3. The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along4. The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation5; 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: 1. Understand the mechanism by which DNA fragments are separated within a gel matrix 2. Understand how conformation of the DNA molecule will determine its mobility through a gel matrix 3. Identify an agarose solution of appropriate concentration for their needs 4. Prepare an agarose gel for electrophoresis of DNA samples 5. Set up the gel electrophoresis apparatus and power supply 6. Select an appropriate voltage for the separation of DNA fragments 7. Understand the mechanism by which ethidium bromide allows for the visualization of DNA bands 8. Determine the sizes of separated DNA fragments    相似文献   

7.
G T Williams 《Gene》1987,53(1):121-126
This report describes a DNA preparation method which allows the detection of single-copy genes in samples of as few as 6000 eukaryotic cells. The technique uses proteinase K digestion in detergent and low-gelation-temperature agarose followed by solidification of the agarose and removal of the detergent by diffusion. RNase and restriction enzyme digestion are carried out in solution after remelting the agarose. The procedure can be performed successfully with mammalian cells in suspension, with parasitic protozoa and with pieces of mammalian tissue weighing less than 1 mg. Numerous samples can be processed simultaneously using frozen as well as fresh material.  相似文献   

8.
There has been an increasing application of molecular DNA probes to evaluate a variety of clinical conditions. Frequently, the amount of tissue or number of cells available limits analysis by conventional DNA extraction and Southern blot hybridization. Moreover, DNA amplification techniques cannot be used in all cases. We have applied a modification of the DNA extraction-Southern blot hybridization technique to clinical samples which provides essentially quantitative recovery and analysis of DNA from minimal numbers of cells. DNA was obtained from cells which were immobilized in agarose blocks for lysis, deproteinization and restriction enzyme digestion. The DNA was then run directly into agarose gels to size fractionate for Southern blot analysis. Cells can be suspended in agarose blocks for over one year and frozen cells can be thawed and suspended in agarose. A variety of restriction enzymes can be used. Single copy sequences can be detected from as few as 5 x 10(4) cells. We have employed this method to examine immunoglobulin gene rearrangements in PBL from leukemia patients as well as bone marrow from myeloma patients. In addition, we have used the technique to accurately assess bone marrow engraftment after transplant. These results demonstrate a diagnostic application of this technique in a variety of clinical samples where there may be limited availability of cells.  相似文献   

9.
Quantitation of UV-induced DNA damages in nanogram quantities of non-radiactive DNA from irradiated plants by gel electrophoresis requires a prompt, efficient, high-yield method of isolating DNA yielding high-molecular-weight, enzymatically digestible DNA. To meet these criteria we devised a high-yield method for isolating from plant tissue, DNA whose single-strand molecular length is greater than about 170 kb. Leaf tissue is embedded in agarose plugs, digested with Proteinase K in the presence of detergent, and treated with phenylmethylsulfonyl fluoride (PMSF). The agarose plugs are then soaked with buffer appropriate to the desired enzyme treatment. Evaluation of the DNA on neutral and alkaline gels indicates its high molecular length and low frequency of single-strand breaks. The DNA can be digested with damage-specific and other endonucleases. The method is especially suitable for DNA damage quantitation, as tissue processing is carried out immediately after harvesting (allowing DNA lesion measurement at precisely known times after irradiation), and many samples can be easily handled at once. It should also be useful for molecular analysis of large numbers of plant samples available only in small quantities. We here use this method to quantitate DNA damage induced by 297 and 365 nm radiation, and calculate the relative damaging effects of these wavebands in today's solar spectrum.  相似文献   

10.
A simple technique for electroelution of DNA from environmental samples.   总被引:1,自引:0,他引:1  
P A Rochelle  B H Olson 《BioTechniques》1991,11(6):724, 726-724, 728
A novel method was developed for the extraction of DNA from environmental material. Soil or sediment samples were encapsulated in agarose blocks and, following treatment with lysis reagents, the DNA was extracted by electroelution.  相似文献   

11.
A technique to quantitate small volumes of dilute solutions of different-sized DNA fragments has been developed. The detection limit was 0.7 micrograms/ml and the technique could be used even in the presence of diffusable substances, including those such as sodium dodecyl sulfate which affect surface tension and also exhibit fluorescence when stained with ethidium bromide and excited by ultraviolet light. The DNA was mixed with low-melting-point agarose and pipetted into preformed wells in an agarose plate, where it solidified. After diffusion of small molecules, the amount of DNA was estimated by comparing ethidium bromide-mediated fluorescence of samples with that of standards.  相似文献   

12.
J C Bearden 《Gene》1979,6(3):221-234
A new theoretical model for the migration of high-molecular-weight, double-stranded DNA on agarose gels is presented. This leads to the prediction that under certain conditions of electrophoresis, a linear relationship will exist between the molecular weight of a DNA molecule, raised to the (-2/3) power, and its electrophoretic mobility. Agarose gel electrophoresis of the fragments of bacteriophage lambda DNA produced by several restriction endonucleases confirms this relationship, and establishes some of the limits on its linearity. For this work, a polyacrylamide slab gel apparatus was modified for use with agarose gels. This apparatus has several advantages over others commercially available for agarose gel electrophoresis, including the abilities to run a larger number of samples at one time, to use lower-concentration gels, and to maintain better temperature stability across the width of the gel. The validation of the relationship developed here between molecular weight and electrophoretic mobility should make this a useful method for determining the molecular weights of DNA fragments.  相似文献   

13.
This protocol for DNA isolation from forest soil samples is advantageous because it uses only one liquid transference step and can process several samples with minimal time and equipment. The use of benzyl chloride early in the extraction protocol increases DNA yield and purity. The obtained DNA is useful for PCR amplification of nuclear and mitochondrial ribosomal related sequences from fungi and ribosomal DNA from plant chloroplasts. Isolated DNA can be used either undiluted or at low dilutions in PCR assays. A final glassmilk treatment of isolated DNA is useful to recover high molecular weight DNA fractions from agarose gel. DNA losses during glassmilk treatment can generate negative PCR results.  相似文献   

14.
我们设计了一种简单电洗脱装置,从琼脂糖胶中回收DNA。该装置由两个带旋盖的小管、两块透析膜和一个凝胶屏障组成。在电场作用下,DNA从凝胶中迁移出来,通过凝胶屏障进入由凝胶屏障和透析膜组成的回收小仓。用微量吸样器收集DNA,乙醇沉淀和清洗。该法DNA的回收率约85%;回收的DNA可用于基因工程常规实验。  相似文献   

15.
A simple protocol for DNA isolation from dry roots ofBerberis lycium is described. Four-year-old dry roots are used, and the isolated DNA is suitable for analysis by means of restriction enzyme digestion and random amplification of polymorphic DNA (RAPD). The method involves a modified CTAB procedure using 1% PVP to remove polysaccharides and purification using low-melting-temperature agarose. DNA is amplified by means of PCR using 10-mer random primers from Operon Biotechnologies, Inc. (USA), and DNA samples are digested withTaq I,Hind III andEcoR I and examined on agarose gels. The RAPD reaction is performed according to the 1990 protocol by Williams et al.  相似文献   

16.
应用多重PCR方法检测并鉴别石蜡包埋组织中的结核分枝杆菌复合体与非结核分枝杆菌DNA扩增片段类型 ,为结核分枝杆菌复合体感染与非结核分枝杆菌感染的病理学诊断提供一种补充的鉴别诊断方法。应用三对具有特异性的寡核苷酸引物 ,进行多重PCR扩增。这三对引物分别对应于分枝杆菌 6 5kD表面抗原、结核分枝杆菌插入序列IS6 1 1 0及人类β 珠蛋白基因的部分序列 ,其扩增产物分别为 3 83bp、1 2 3bp和 2 6 8bp。此种多重PCR方法检测的灵敏度为 0 6pg。经多重PCR扩增后进行凝胶电泳 ,结核分枝杆菌复合体 (结核分枝杆菌、牛型结核分枝杆菌、BCG)均可见 3 83bp、1 2 3bp片段 ,而非结核分枝杆菌 (鸟、龟、瘰疬、蟾蜍、堪萨斯、胞内、耻垢分枝杆菌 )仅见 3 83bp片段 (猿猴分枝杆菌与结核分枝杆菌复合体相同 )。与上述相比 ,分枝杆菌感染的临床标本分别增加了一条 2 6 8bp片段。对 2 0 9例临床初步诊断为淋巴结结核病人的石蜡包埋组织标本进行了多重PCR检测 ,1 93例病理诊断为淋巴结结核、结核性肉芽组织、结核性肉芽肿性炎症病人的标本 ,检测结果符合结核分枝杆菌复合体感…  相似文献   

17.
DNA fragments with standard molecular weights (DNA markers, which are usually commercial products) are routinely electrophoresed in conjunction with DNA samples in molecular biology labs to serve as references for DNA molecular weight; this is done by referencing their relative molecular weights. In this study, we present a new technical strategy for constructing super-plasmids for homemade DNA marker production with single restriction enzyme digestion. In this study, two super-plasmids for DNA marker production have been developed, based on tailing activity of Taq polymerase and selective recovery of ligation products following agarose gel electrophoresis.  相似文献   

18.
R J Wiesner  H Swift  R Zak 《Gene》1991,98(2):277-281
A method is presented for the isolation of highly purified mitochondrial (mt)DNA from a crude DNA extract, making use of the different mobilities of covalently closed circular mtDNA vs. endonuclease-digested nuclear DNA in agarose gels. The preparation is virtually free of any contaminating linear DNA, as judged from its electron microscopic appearance, and can be used for further procedures such as polymerase chain reaction (PCR). Since isolation of mitochondria is not a prerequisite for this method, it can be applied to tissue samples in the mg range. In principle, the method can be applied to every eukaryotic species, provided a molecular hybridization probe is available which permits the position of mtDNA to be located in an agarose gel. This probe can be a cDNA, a DNA fragment generated by PCR, or mtDNA itself, if only the approximate size of the genome is known.  相似文献   

19.
Contour-clamped homogeneous electric field (CHEF) electrophoresis is a technique of pulsed-field gel electrophoresis that enables the resolution of large fragments of DNA that cannot be resolved by conventional gel electrophoresis. The procedure involves the application of controlled electric fields that change direction at a predetermined angle to samples of DNA that have been embedded in an agarose gel matrix and digested with a restriction endonuclease. Adjustment of the electrophoresis conditions enables the separation of DNA fragments with lengths from 10 kilobases up to 9 megabases in a size-dependent manner in agarose gels. The banding patterns can be used for epidemiological typing, the separated DNA can be immobilized onto a membrane and used for genetic mapping, or individual fragments can be extracted and used for downstream genetic manipulations. The protocol requires specialized equipment and can be completed in a maximum of 7 days.  相似文献   

20.
The widely used agarose gel electrophoresis method for assessing radiation-induced single-strand-break (SSB) yield in plasmid DNA involves measurement of the fraction of relaxed-circular (C) form that migrates independently from the intact supercoiled (SC) form. We rationalized that this method may underestimate the SSB yield since the position of the relaxed-circular form is not altered when the number of SSB per DNA molecule is >1. To overcome this limitation, we have developed a novel method that directly probes and quantifies SSBs. Supercoiled 3H-pUC19 plasmid samples were irradiated with γ-rays, alkali-denatured, dephosphorylated, and kinated with γ-[32P]ATP, and the DNA-incorporated 32P activities were used to quantify the SSB yields per DNA molecule, employing a standard curve generated using DNA molecules containing a known number of SSBs. The same irradiated samples were analyzed by agarose gel and SSB yields were determined by conventional methods. Comparison of the data demonstrated that the mean SSB yield per plasmid DNA molecule of [21.2 ± 0.59] × 10−2 Gy−1 as measured by direct probing is ∼10-fold higher than that obtained from conventional gel-based methods. These findings imply that the SSB yields inferred from agarose gels need reevaluation, especially when they were utilized in the determination of radiation risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号