首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that Bacillus licheniformis prepenicillinase is modified and processed to form membrane-bound penicillinase in Escherichia coli which contains N-acylglyceride-cysteine27 at the NH2 terminus. In the present study, we have constructed, by in vitro site-directed mutagenesis, two mutant penicillinase genes in which the modification site (the 27th cysteine residue in prepenicillinase) is either converted into serine (penPSer27) or is deleted along with the preceding four residues (Ala23 to Cys27, delta penP2327). The modification, processing, and subcellular localization of these two mutant penicillinases in E. coli cells were studied. Our results indicate that the delta penP2327 deletion mutant prepenicillinase is largely metabolically inert and the unmodified and uncleaved form is associated with the membrane fraction; a small fraction (about 7-9%) appears to contain glyceride-modified prepenicillinase (presumably at the Cys-21 position) which is not cleaved. In contrast, the Cys-27 in equilibrium Ser-27 point mutant prepenicillinase is processed into two forms which contain Asn-29 and Ser-35 at their NH2 termini, respectively, and the bulk of the processed penicillinase appears to be located in the peri-plasm. These results are discussed in terms of the substrate specificities of signal peptidases in E. coli.  相似文献   

2.
The cloned gene coding for Bacillus licheniformis penicillinase (penP) was introduced into Escherichia coli in a heat-inducible lambda Qam vector. After induction, significant amounts of penicillinase were synthesized in the new host. The cellular location of the penicillinase was found to be almost exclusively the outer membrane fraction of E. coli, and virtually no soluble penicillinase was found. According to sodium dodecyl sulfate-gel electrophoresis, the size of the penicillinase from E. coli was identical to that of the membrane-bound form of the B. licheniformis penicillinase. Gel filtration in the presence of Triton X-100 suggested that the penicillinase from E. coli had amphiphilic properties, as does B. licheniformis membrane penicillinase. These results show that the export of the penicillinase to the outer membrane of E. coli involves the cleavage of the signal peptide from the prepenicillinase, giving an outer membrane component indistinguishable from the membrane penicillinase of B. licheniformis.  相似文献   

3.
Transcriptional analyses of the Bacillus licheniformis penP gene   总被引:9,自引:1,他引:8       下载免费PDF全文
  相似文献   

4.
T Imanaka  M Nakae  T Ohta    M Takagi 《Journal of bacteriology》1992,174(4):1423-1425
Pro residues in predicted beta-turn structures were substituted with other amino acids to obtain temperature-sensitive penicillinase repressors (PenI). A mutant repressor (P70L; Pro-70 is substituted with Leu) was inactive at 48 degrees C and penP gene expression was derepressed (1,200 U/OD660 [optical density at 660 nm] ), although the mutant was still active at 30 degrees C (27 U). The heat induction ratio (penicillinase activity at 48 degrees C compared with that at 30 degrees C) of the mutant was 98 times higher than that of the wild type (i.e., 44 versus 0.45). This result indicated that the side chain of the Leu residue in P70L destroyed the proper folding of the repressor protein at the elevated temperature, whereas the Pro residue of the wild-type repressor stabilized this predicted beta-turn structure even at 48 degrees C. When the Pro residue was replaced by amino acid residues with smaller side chains (i.e., Gly and Ala), these mutant repressors were less temperature sensitive than P70L. These data suggest that the presence of the Pro residue in the beta-turn structure could be one of the key factors in stabilizing protein structure at elevated temperatures.  相似文献   

5.
T Imanaka  T Himeno    S Aiba 《Journal of bacteriology》1987,169(9):3867-3872
The penicillinase antirepressor gene, penJ, of Bacillus licheniformis ATCC 9945a was cloned in Escherichia coli by using pMB9 as a vector plasmid. The penicillinase gene, penP, its repressor gene, penI, and penJ were encoded on the cloned 5.2-kilobase HindIII fragment of the recombinant plasmid pTTE71. The penJ open reading frame was composed of 1,803 bases and 601 amino acid residues (molecular weight, 68,388). A Shine-Dalgarno sequence was found 7 bases upstream from the translation start site. Since this sequence was located in the 3'-terminal region of the penI gene, penJ might be transcribed together with penI as a polycistronic mRNA from the penI promoter. Frameshift mutations of penJ were constructed in vitro from pTTE71, and the penJ mutant gene was introduced into B. licheniformis by chromosomal recombination. The transformant B. licheniformis U173 (penP+ penI+ penJ) turned out to be uninducible for penicillinase production, whereas the wild-type strain (penP+ penI+ penJ+) was inducible. Only when these three genes (penP, penI, and PenJ) were simultaneously subcloned in Bacillus subtilis did the plasmid carrier exhibit inducible penicillinase production, as did wild-type B. licheniformis. It was concluded that penJ is involved in the penicillinase induction. The regulation of penP expression by penI and penJ is discussed.  相似文献   

6.
T Himeno  T Imanaka    S Aiba 《Journal of bacteriology》1986,168(3):1128-1132
Bacillus licheniformis penicillinase genes, penP and penI, are coded on a 4.2-kilobase EcoRI fragment of pTTE21 (T. Imanaka, T. Tanaka, H. Tsunekawa, and S. Aiba, J. Bacteriol. 147:776-186, 1981). The EcoRI fragment was subcloned in a low-copy-number plasmid pTB522 in Bacillus subtilis. B. subtilis carrying the recombinant plasmid pPTB60 (Tcr penP+ penI+) was chemically mutagenized. Of about 150,000 colonies, two penI(Ts) mutant plasmids, pPTB60D13 and pPTB60E24, were screened by the plate assay at 30 and 48 degrees C for penicillinase. By constructing recombinant plasmids between wild-type and mutant plasmids, the mutation points were shown to be located in a 1.7-kilobase EcoRI-PstI fragment. The EcoRI-PstI fragments of the wild-type plasmid and two mutant plasmids were sequenced. A large open reading frame, composed of 384 bases and 128 amino acid residues (molecular weight, 14,983), was found. Since the mutation points were located at different positions in the protein coding region (Ala to Val for pPTB60D13 and Pro to Leu for pPTB60E24), the coding region was concluded to be the penI gene. A Shine-Dalgarno sequence was found 7 bases upstream from the translation start site (ATG). A probable promoter sequence which is very similar to the consensus sequence was also found upstream of the penP promoter, but in the opposite direction. A consensus twofold symmetric sequence (AAAGTATTA CATATGTAAGNTTT) which might have been used as a repressor binding region was found downstream and in the midst of the penP promoter and also downstream of the penI promoter. The regulation of penP and penI by the repressor is discussed.  相似文献   

7.
The chromosomal beta-lactamase (penicillinase, penP) gene from Bacillus licheniformis 749/C has been cloned in Escherichia coli. The locations of the target sites for various restriction enzymes on the 4.2-kilobase EcoRI fragment were determined. By matching the restriction mapping data with the potential nucleotide sequences of the penP gene deduced from known protein sequence, we established the exact position of the penP gene on the fragment. A bifunctional plasmid vector carrying the penP gene, plasmid pOG2165, was constructed which directs the synthesis of the heterologous beta-lactamase in both E. coli and Bacillus subtilis hosts. The protein synthesized in E. coli and B. subtilis is similar in size to the processed beta-lactamase made in B. licheniformis. Furthermore, the beta-lactamase made in B. subtilis is efficiently secreted by the host into the culture medium, indicating that B. subtilis is capable of carrying out the post-translational proteolytic cleavage(s) to convert the membrane-bound precursor enzyme into the soluble extracellular form.  相似文献   

8.
Expression and secretion of hepatitis B viral surface antigen in E. coli   总被引:1,自引:0,他引:1  
Hepatitis B viral surface antigen (HBsAg) gene was subcloned into the BglII site of Bacillus licheniformis penicillinase (penP) gene of secretory vector pJP104. Expression and secretion of HBsAg protein was achieved by the E. coli CS412 carrying the plasmid pJPS2 in which the penP:HBsAg hybrid gene was under the control of two promoters, lipoprotein (lpp) and penP, spaced 450 bases apart. The secreted form of HBsAg encoded by the hybrid penP: HBsAg gene of plasmid pJPS2 was purified by immunoaffinity chromatography and found to be a 25 kilodalton protein.  相似文献   

9.
A transformant of Bacillus stearothermophilus carrying a recombinant plasmid, pLP11 (9.5 MDa), on which the penicillinase gene (penP) and kanamycin resistance gene (kan) were located was subjected to mutagenesis, and a mutant plasmid (9.5 MDa; penP kan), designated pTRA117, was obtained. A transformant of B. stearothermophilus carrying pTRA117 could grow at 63 degrees C in medium containing kanamycin, whereas a transformant carrying pLP11 could not. Although pTRA117 was detected as covalently closed circular (ccc) DNA when it was extracted from transformants cultured at 48 degrees C, it was integrated into the host chromosome when the culture temperature was shifted up to 63 degrees C. If the culture temperature was lowered to 48 degrees C from 63 degrees C, a new plasmid (10.7 MDa; penP kan), designated pTRZ117, could be detected as ccc DNA; the size of this plasmid suggested that it was pTRA117 plus a 1.2 MDa DNA fragment of the host chromosome, and this was confirmed by Southern hybridization. pTRZ90 (7.9 MDa; kan) was constructed from pTRZ117 by the deletion of a 2.8 MDa DNA fragment that contained penP. Fresh transformants of B. stearothermophilus that carried either pTRZ117 or pTRZ90 could grow at 65 degrees C.  相似文献   

10.
The synthesis of the inducible enzyme penicillinase of Bacillus licheniformis is negatively controlled by a repressor (D.A. Dubnau and M.R. Pollock, J. Gen. Microbiol. 41:7-21, 1965; D. J. Sherratt and J. F. Collins, J. Gen. Microbiol. 76:217-230,1973). The molecular organization of the genes coding for penicillinase (penP) and its repressor (penI) has recently been determined (T. Himeno, T. Imanaka, and S. Aiba, J. Bacteriol. 168:1128-1132, 1986). These two genes are transcribed divergently from within a 364-nucleotide region separating the coding sequences. We cloned and sequenced the repressor gene (penIc) from strain 749/C that constitutively produces penicillinase. The penIc and penI+ (wild-type) genes were expressed in Escherichia coli. Complementation analysis indicated that the repressor is the only trans-acting protein required to regulate the expression of the penI and penP genes. We purified the wild-type repressor protein, used it in gel retardation and DNase I protection experiments, and identified three operators positioned in the region between the penP and penI coding sequences. The spatial arrangement of the operators and the hierarchy in repressor binding seen in the protection experiments indicate that (i) the penI gene product represses the expression of the penP gene by physically blocking the RNA polymerase-binding site and (ii) the penI gene is autoregulated.  相似文献   

11.
Alkaliphilic Bacillus penicillinase produced by Escherichia coli is distributed in several subcellular compartments according to cultivation conditions. The penicillinase that accumulated in particular subcellular fractions of E. coli grown under different conditions was purified and characterized. Periplasmic or extracellular penicillinase (24 kDa) was mature protein, indicating that the putative precursor (27 kDa) was processed at the correct amino acid residue, probably by signal peptidase I. Cytoplasmic penicillinase contained two unusual proteins (25 kDa) that are produced by proteolytic cleavage of the precursor within its signal sequence.  相似文献   

12.
Abstract We have constructed secretion vector plasmids that have the signal sequence of the Bacillus licheniformis penicillinase gene ( penP ) or the Bacillus stearothermophilus α-amylase gene ( amyT ). We have also constructed penP, amyT and hsa (human salivary α-amylase gene) cartridges. Each of these cartridges was cloned on secretion vectors in Bacillus subtilis , and enzyme production was examined. When amyT vector was used, nearly the same efficiency of enzyme secretion was observed for amyT and penP cartridges. When penP vector was used, enzyme secretion for amyT decreased to about 3% of that for penP cartridges. The eukaryotic gene hsa was hardly expressed in any secretion vectors in B. subtilis .  相似文献   

13.
Human ICAM-1 is the cellular receptor for the major group of human rhinoviruses (HRVs). Previous studies have suggested that the N-terminal domain of ICAM-1 is critical for binding of the major group rhinoviruses. To further define the residues within domain 1 that are involved in virus binding, we constructed an extensive series of ICAM-1 cDNAs containing single and multiple amino acid residue substitutions. In each case, substitutions involved replacement of the human amino acids with those found in murine ICAM-1 to minimize conformational effects. To facilitate the mutagenesis process, a synthetic gene encompassing the first two domains of ICAM-1 was constructed which incorporated 27 additional restriction sites to allow mutagenesis by oligonucleotide replacement. Each of the new constructs was placed into a Rous sarcoma virus vector and expressed in primary chicken embryo fibroblast cells. Binding assays were performed with six major group HRVs, including one high-affinity binding mutant of HRV-14, and two monoclonal antibodies. Results indicated that different serotypes displayed a range of sensitivities to various amino acid substitutions. Amino acid residues of ICAM-1 showing the greatest effect on virus and antibody binding included Pro-28, Lys-29, Leu-30, Leu-37, Lys-40, Ser-67, and Pro-70.  相似文献   

14.
This work uses alpha-conotoxin PnIB to probe the agonist binding site of neuronal alpha(7) acetylcholine receptors. We mutated the 13 non-cysteine residues in CTx PnIB, expressed alpha(7)/5-hydroxytryptamine-3 homomeric receptors in 293 HEK cells, and measured binding of each mutant toxin to the expressed receptors by competition against the initial rate of (125)I-alpha-bungarotoxin binding. The results reveal that residues Ser-4, Leu-5, Pro-6, Pro-7, Ala-9, and Leu-10 endow CTx PnIB with affinity for alpha(7)/5-hydroxytryptamine-3 receptors; side chains of these residues cluster in a localized region within the three-dimensional structure of CTx PnIB. We next mutated key residues in the seven loops of alpha(7) that converge at subunit interfaces to form the agonist binding site. The results reveal predominant contributions by residues Trp-149 and Tyr-93 in alpha(7) and smaller contributions by Ser-34, Arg-186, Tyr-188, and Tyr-195. To identify pairwise interactions that stabilize the receptor-conotoxin complex, we measured binding of receptor and toxin mutations and analyzed the results by double mutant cycles. The results reveal a single dominant interaction between Leu-10 of CTx PnIB and Trp-149 of alpha(7) that anchors the toxin to the binding site. We also find weaker interactions between Pro-6 of CTx PnIB and Trp-149 and between both Pro-6 and Pro-7 and Tyr-93 of alpha(7). The overall results demonstrate that a localized hydrophobic region in CTx PnIB interacts with conserved aromatic residues on one of the two faces of the alpha(7) binding site.  相似文献   

15.
The mitochondrial ADP/ATP carrier (Ancp) is a paradigm of the mitochondrial carrier family, which allows cross-talk between mitochondria, where cell energy is mainly produced, and cytosol, where cell energy is mainly consumed. The members of this family share numerous structural and functional characteristics. Resolution of the atomic structure of the bovine Ancp, in a complex with one of its specific inhibitors, revealed interesting features and suggested the involvement of some particular residues in the movements of the protein to perform translocation of nucleotides from one side of the membrane to the other. They correspond to three prolines located in the odd-numbered transmembrane helices (TMH), Pro-27, Pro-132, and Pro-229. The corresponding residues of the yeast Ancp (Pro-43, Ser-147, and Pro-247) were mutated into alanine or leucine, one at a time and analysis of the various mutants evidenced a crucial role of Pro-43 and Pro-247 during nucleotide transport. Beside, replacement of Ser-147 with proline does not inactivate Ancp and this is discussed in view of the conservation of the three prolines at equivalent positions in the Ancp sequences. These prolines belong to the signature sequences of the mitochondrial carriers and we propose they play a dual role in the mitochondrial ADP/ATP carrier function and biogenesis. Unexpectedly their mutations cause more general effects on mitochondrial biogenesis and morphology, as evidenced by measurements of respiratory rates, cytochrome contents, and also clearly highlighted by fluorescence microscopy.  相似文献   

16.
V Wittman  H C Lin    H C Wong 《Journal of bacteriology》1993,175(22):7383-7390
The penicillinase repressor (PENI) negatively regulates expression of the penicillinase gene (penP) in Bacillus licheniformis by binding to its operators located within the promoter region of penP.penI codes for a protein with 128 amino acids. Filter-binding analyses suggest that the active form of the repressor is a dimer. Genetic analyses of PENI derivatives showed that the repressor carrying either a 6-amino-acid deletion near the N terminus or a 14-amino-acid deletion at the C terminus was functionally inactive in vivo. A repressor derivative carrying a 6-amino-acid deletion within its N-terminal region was extensively purified and used in DNA footprinting and subunit cross-linking analyses. The results of these studies showed that the repressor derivative had lost its ability to bind operator specifically even though it could dimerize effectively. In similar studies, we demonstrated that an N-terminal portion of PENI with a molecular mass of 10 kDa derived by digestion with papain was able to bind operator specifically but with reduced affinity and had completely lost its ability to dimerize. These data suggest that the repressor has two functional and separable domains. The amino-terminal domain of the repressor is responsible for operator recognition, and the carboxyl-terminal domain is involved in subunit dimerization.  相似文献   

17.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

18.
By using plasmid pMB9, penicillinase genes (penP and penI) from both the wild-type and constitutive strains of Bacillus licheniformis 9945A were cloned in EScherichia coli. When a low-copy-number plasmid was used, both wild-type and constitutive penicillinase genes could be transferred into Bacillus subtilis. However, when a high-copy-number plasmid was used, only the genes of the wild type could be transferred. These recombinant plasmids in B. subtilis could all be transferred by the protoplast transformation procedure into B. licheniformis. Transformants of E. coli were resistant to ampicillin (20 micrograms/ml) in spite of the low penicillinase activities (7 U/mg of cells). However, transformants of B. subtilis and B. licheniformis were sensitive to ampicillin (20 micrograms/ml) even in high penicillinase activities (more than 10,000 U/mg of cells). The secretion of penicillinase was rarely observed in E. coli. In contrast, penicillinases secreted from transformants of B. subtilis and B. licheniformis were around 30 and 60% of the total activities, respectively. We took advantage of the plasmids to permit the construction of hetero- and mero-polyploid structures in host cells, and we discuss a regulatory mechanism of penicillinase synthesis in B. licheniformis.  相似文献   

19.
The bacterial degradation pathways for the nematocide 1,3-dichloropropene rely on hydrolytic dehalogenation reactions catalyzed by cis- and trans-3-chloroacrylic acid dehalogenases (cis-CaaD and CaaD, respectively). X-ray crystal structures of native cis-CaaD and cis-CaaD inactivated by (R)-oxirane-2-carboxylate were elucidated. They locate four known catalytic residues (Pro-1, Arg-70, Arg-73, and Glu-114) and two previously unknown, potential catalytic residues (His-28 and Tyr-103'). The Y103F and H28A mutants of these latter two residues displayed reductions in cis-CaaD activity confirming their importance in catalysis. The structure of the inactivated enzyme shows covalent modification of the Pro-1 nitrogen atom by (R)-2-hydroxypropanoate at the C3 position. The interactions in the complex implicate Arg-70 or a water molecule bound to Arg-70 as the proton donor for the epoxide ring-opening reaction and Arg-73 and His-28 as primary binding contacts for the carboxylate group. This proposed binding mode places the (R)-enantiomer, but not the (S)-enantiomer, in position to covalently modify Pro-1. The absence of His-28 (or an equivalent) in CaaD could account for the fact that CaaD is not inactivated by either enantiomer. The cis-CaaD structures support a mechanism in which Glu-114 and Tyr-103' activate a water molecule for addition to C3 of the substrate and His-28, Arg-70, and Arg-73 interact with the C1 carboxylate group to assist in substrate binding and polarization. Pro-1 provides a proton at C2. The involvement of His-28 and Tyr-103' distinguishes the cis-CaaD mechanism from the otherwise parallel CaaD mechanism. The two mechanisms probably evolved independently as the result of an early gene duplication of a common ancestor.  相似文献   

20.
以获得大量胞外青霉素酶为目的,将青霉素酶基因克隆至表达载体pWB980中,并转化到双蛋白酶缺陷的Bacillus subtilis DB104。重组菌在LB培养基中培养24小时后, SDS-PAGE分析发现目的蛋白分子量为28kDa,酶活力为339U/mL;通过筛选7种不同的发酵培养基发现4#培养基更利于青霉素酶的表达,最大酶活力为1580U/mL,较优化前提高了3.66倍,并对该重组菌进行了7L罐放大实验,结果显示在培养24小时产酶达到高峰,酶活力为1255.8 U/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号