首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R), an intracellular calcium channel, has three isoforms with >65% sequence homology, yet the isoforms differ in their function and regulation by post-translational modifications. We showed previously that InsP(3)R-1 is functionally modified by O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) (Rengifo, J., Gibson, C. J., Winkler, E., Collin, T., and Ehrlich, B. E. (2007) J. Neurosci. 27, 13813-13821). We now report the effect of O-GlcNAcylation on InsP(3)R-2 and InsP(3)R-3. Analysis of AR4-2J cells, a rat pancreatoma cell line expressing predominantly InsP(3)R-2, showed no detectable O-GlcNAcylation of InsP(3)R-2 and no significant functional changes despite the presence of the enzymes for addition (O-β-N-acetylglucosaminyltransferase) and removal (O-β-N-acetylglucosaminidase) of the monosaccharide. In contrast, InsP(3)R-3 in Mz-ChA-1 cells, a human cholangiocarcinoma cell line expressing predominantly InsP(3)R-3, was functionally modified by O-GlcNAcylation. Interestingly, the functional impact of O-GlcNAcylation on the InsP(3)R-3 channel was opposite the effect measured with InsP(3)R-1. Addition of O-GlcNAc by O-β-N-acetylglucosaminyltransferase increased InsP(3)R-3 single channel open probability. Incubation of Mz-ChA-1 cells in hyperglycemic medium caused an increase in the InsP(3)-dependent calcium release from the endoplasmic reticulum. The dynamic and inducible nature of O-GlcNAcylation and the InsP(3)R isoform specificity suggest that this form of modification of InsP(3)R and subsequent changes in intracellular calcium transients are important in physiological and pathophysiological processes.  相似文献   

2.
Inositol 1,4,5-trisphosphate receptors (InsP3R) are a family of ubiquitously expressed intracellular Ca2+ channels. Isoform-specific properties of the three family members may play a prominent role in defining the rich diversity of the spatial and temporal characteristics of intracellular Ca2+ signals. Studying the properties of the particular family members is complicated because individual receptor isoforms are typically never expressed in isolation. In this article, we discuss strategies for studying Ca2+ release through individual InsP3R family members with particular reference to methods applicable following expression of recombinant InsP3R and mutant constructs in the DT40-3KO cell line, an unambiguously null InsP3R expression system.  相似文献   

3.
The ubiquitous inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular Ca(2+) release channel is engaged by thousands of plasma membrane receptors to generate Ca(2+) signals in all cells. Understanding how complex Ca(2+) signals are generated has been hindered by a lack of information on the kinetic responses of the channel to its primary ligands, InsP(3) and Ca(2+), which activate and inhibit channel gating. Here, we describe the kinetic responses of single InsP(3)R channels in native endoplasmic reticulum membrane to rapid ligand concentration changes with millisecond resolution, using a new patch-clamp configuration. The kinetics of channel activation and deactivation showed novel Ca(2+) regulation and unexpected ligand cooperativity. The kinetics of Ca(2+)-mediated channel inhibition showed the single-channel bases for fundamental Ca(2+) release events and Ca(2+) release refractory periods. These results provide new insights into the channel regulatory mechanisms that contribute to complex spatial and temporal features of intracellular Ca(2+) signals.  相似文献   

4.
The role of calmodulin for inositol 1,4,5-trisphosphate receptor function   总被引:1,自引:0,他引:1  
Intracellular calcium release is a fundamental signaling mechanism in all eukaryotic cells. The ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (IP(3)R) are intracellular calcium release channels. Both channels can be regulated by calcium and calmodulin (CaM). In this review we will first discuss the role of calcium as an activator and inactivator of the IP(3)R, concluding that calcium is the most important regulator of the IP(3)R. In the second part we will further focus on the role of CaM as modulator of the IP(3)R, using results of the voltage-dependent Ca(2+) channels and the RyR as reference material. Here we conclude that despite the fact that different CaM-binding sites have been characterized, their function for the IP(3)R remains elusive. In the third part we will discuss the possible functional role of CaM in IP(3)-induced Ca(2+) release (IICR) by direct and indirect mechanisms. Special attention will be given to the Ca(2+)-binding proteins (CaBPs) that were shown to activate the IP(3)R in the absence of IP(3).  相似文献   

5.
Huh YH  Kim KD  Yoo SH 《Biochemistry》2007,46(49):14032-14043
The nucleus also contains the inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ channels in the nucleoplasm proper independent of the nuclear envelope or the cytoplasm. The nuclear IP3R/Ca2+ channels were shown to be present in small IP3-dependent nucleoplasmic Ca2+ store vesicles, yet no information is available regarding the IP3 sensitivity of nuclear IP3R/Ca2+ channels. Here, we show that nuclear IP3R/Ca2+ channels are 3-4-fold more sensitive to IP3 than cytoplasmic ones in both neuroendocrine PC12 cells and nonneuroendocrine NIH3T3 cells. Given the presence of phosphoinositides and phospholipase C and the importance of IP3-mediated Ca2+ signaling in the nucleus, the high IP3 sensitivity of nuclear IP3R/Ca2+ channels seemed to reflect the physiological needs of the nucleus to finely control the IP3-dependent Ca2+ concentrations. It was further shown that the IP3R/Ca2+ channels of secretory cells are 7-8-fold more sensitive to IP3 than those of nonsecretory cells. This difference appeared to result from the presence of secretory cell marker protein chromogranins (thus secretory granules) in secretory cells; expression of chromogranins in NIH3T3 cells increased the IP3 sensitivity of both nuclear and cytoplasmic IP3R/Ca2+ channels by approximately 4-6-fold. In contrast, suppression of chromogranin A expression in PC12 cells changed the EC50 of IP3 sensitivity for cytoplasmic IP3R/Ca2+ channels from 17 to 47 nM, whereas suppression of chromogranin B expression changed the EC50 of cytoplasmic IP3R/Ca2+ channels from 17 to 102 nM and the nuclear ones from 4.3 to 35 nM. Given that secretion is the major function of secretory cells and is under a tight control of intracellular Ca2+ concentrations, the high IP3 sensitivity appears to reflect the physiological roles of secretory cells.  相似文献   

6.
At the time of fertilization, an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) underlies egg activation and initiation of development in all species studied to date. The inositol 1,4,5-trisphosphate receptor (IP(3)R1), which is mostly located in the endoplasmic reticulum (ER) mediates the majority of this Ca(2+) release. The sensitivity of IP(3)R1, that is, its Ca(2+) releasing capability, is increased during oocyte maturation so that the optimum [Ca(2+)](i) response concurs with fertilization, which in mammals occurs at metaphase of second meiosis. Multiple IP(3)R1 modifications affect its sensitivity, including phosphorylation, sub-cellular localization, and ER Ca(2+) concentration ([Ca(2+)](ER)). Here, we evaluated using mouse oocytes how each of these factors affected IP(3)R1 sensitivity. The capacity for IP(3)-induced Ca(2+) release markedly increased at the germinal vesicle breakdown stage, although oocytes only acquire the ability to initiate fertilization-like oscillations at later stages of maturation. The increase in IP(3)R1 sensitivity was underpinned by an increase in [Ca(2+)](ER) and receptor phosphorylation(s) but not by changes in IP(3)R1 cellular distribution, as inhibition of the former factors reduced Ca(2+) release, whereas inhibition of the latter had no impact. Therefore, the results suggest that the regulation of [Ca(2+)](ER) and IP(3)R1 phosphorylation during maturation enhance IP(3)R1 sensitivity rendering oocytes competent to initiate oscillations at the expected time of fertilization. The temporal discrepancy between the initiation of changes in IP(3)R1 sensitivity and acquisition of mature oscillatory capacity suggest that other mechanisms that regulate Ca(2+) homeostasis also shape the pattern of oscillations in mammalian eggs.  相似文献   

7.
High affinity Ins(1,4,5)P3-binding sites of permeabilized hepatocytes are probably the ligand recognition sites of the receptors that mediate the effects of Ins91,4,5)P3 on intracellular Ca2+ mobilization. We have now solubilized these sites from rat liver membranes in the zwitterionic detergent, CHAPS, and shown that the solubilized bind Ins(1,4,5)P3 with an affinity (Kd = 7.26 ± 0.52 nM, Hill coefficient H = 1.05 ± 0.06) similar to that of the sites in native membranes (Kd = 6.02 ± 0.02). ATP and a range of inositol phosphates (Ins(2,4,5)P3 Ins(4,5)P2, and inositol 1,4,5-trisphosphorothioate) also bound with similar affinities to the native and solubilized sites. Solubilization of the liver InsP3 receptor will allow its further characterization, purification, and comparison of its properties with those of InsP3 receptors already purified from cerebellum and smooth muscle.  相似文献   

8.
Mechanisms accounting for the cellular entry of calcium that mediates cellular proliferation and apoptosis have been obscure. Previously we reported selective augmentation of type 3 inositol (1,4,5) trisphosphate receptors (IP(3)R3) in lymphocytes undergoing programmed cell death, which was prevented by antisense constructs to IP(3)R3. We now report increases in mRNA and protein levels for IP(3)R3 associated with cell death in several apoptotic paradigms in diverse tissues. Elevations of IP(3)R3 occur during developmental apoptosis in early postnatal cerebellar granule cells, dorsal root ganglia, embryonic hair follicles, and intestinal villi. Neurotoxic damage elicited by the glutamate agonist kainate is also associated with IP(3)R3 augmentation. In chick dorsal root ganglia neurons undergoing apoptosis due to deprivation of nerve growth factor, levels of IP(3)R3 are selectively increased and cell death is selectively prevented by antisense oligonucleotides to IP(3)R3. Thus, IP(3)R3 appears to participate actively in cell death in a diversity of tissues.  相似文献   

9.
The lifetime of inositol 1,4,5-trisphosphate in single cells   总被引:4,自引:0,他引:4       下载免费PDF全文
In many eukaryotic cell types, receptor activation leads to the formation of inositol 1,4,5-trisphosphate (IP3) which causes calcium ions (Ca) to be released from internal stores. Ca release was observed in response to the muscarinic agonist carbachol by fura-2 imaging of N1E-115 neuroblastoma cells. Ca release followed receptor activation after a latency of 0.4 to 20 s. Latency was not caused by Ca feedback on IP3 receptors, but rather by IP3 accumulation to a threshold for release. The dependence of latency on carbachol dose was fitted to a model in which IP3 synthesis and degradation compete, resulting in gradual accumulation to a threshold level at which Ca release becomes regenerative. This analysis gave degradation rate constants of IP3 in single cells ranging from 0 to 0.284 s-1 (0.058 +/- 0.067 s-1 SD, 53 cells) and a mean IP3 lifetime of 9.2 +/- 2.2 s. IP3 degradation was also measured directly with biochemical methods. This gave a half life of 9 +/- 2 s. The rate of IP3 degradation sets the time frame over which IP3 accumulations are integrated as input signals. IP3 levels are also filtered over time, and on average, large-amplitude oscillations in IP3 in these cells cannot occur with period < 10 s.  相似文献   

10.
Inositol 1,4,5-trisphosphate receptors (InsP3R) play a key role in intracellular calcium (Ca2+) signaling. Three mammalian InsP3R isoforms--InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals, but the functional differences between the three mammalian InsP3R isoforms are poorly understood. Here we compared single-channel behavior of the recombinant rat InsP3R1, InsP3R2, and InsP3R3 expressed in Sf9 cells, reconstituted into planar lipid bilayers and recorded with 50 mM Ba2+ as a current carrier. We found that: 1), for all three mammalian InsP3R isoforms the size of the unitary current is 1.9 pA and single-channel conductance is 74-80 pS; 2), in optimal recording conditions the maximal single-channel open probability for all three mammalian InsP3R isoforms is in the range 30-40%; 3), in optimal recording conditions the mean open dwell time for all three mammalian InsP3R isoforms is 7-8 ms, the mean closed dwell time is approximately 10 ms; 4), InsP3R2 has the highest apparent affinity for InsP(3) (0.10 microM), followed by InsP3R1 (0.27 microM), and then by InsP3R3 (0.40 microM); 5), InsP3R1 has a high-affinity (0.13 mM) ATP modulatory site, InsP3R2 gating is ATP independent, and InsP3R3 has a low-affinity (2 mM) ATP modulatory site; 6), ATP modulates InsP3R1 gating in a noncooperative manner (n(Hill) = 1.3); 7), ATP modulates InsP3R3 gating in a highly cooperative manner (n(Hill) = 4.1). Obtained results provide novel information about functional properties of mammalian InsP3R isoforms.  相似文献   

11.
Inositol 1,4,5-trisphosphate (IP3) releases internal stores of calcium by binding to a specific membrane receptor which includes both the IP3 recognition site as well as the associated calcium channel. The IP3 receptor is regulated by ATP, calcium, and phosphorylation by protein kinase A, protein kinase C, and calcium/calmodulin-dependent protein kinase II. Its cDNA sequence predicts at least two consensus sequences where nucleotides might bind, and direct binding of ATP to the IP3 receptor has been demonstrated. In the present study, we demonstrate autophosphorylation of the purified and reconstituted IP3 receptor on serine and find serine protein kinase activity of the IP3 receptor toward a specific peptide substrate. Several independent purification procedures do not separate the IP3 receptor protein from the phosphorylating activity, and many different protein kinase activators and inhibitors do not identify protein kinases as contaminants. Also, renaturation experiments reveal autophosphorylation of the monomeric receptor on polyvinylidene difluoride membranes.  相似文献   

12.
13.
Allosteric binding of calcium ion (Ca2+) to inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) controls channel gating within IP3R. Here, we present biochemical and electron microscopic evidence of Ca2+-sensitive structural changes in the three-dimensional structure of type 1 IP3R (IP3R1). Low concentrations of Ca2+ and high concentrations of Sr2+ and Ba2+ were shown to be effective for the limited proteolysis of IP3R1, but Mg2+ had no effect on the proteolysis. The electron microscopy and the limited proteolysis consistently demonstrated that the effective concentration of Ca2+ for conformational changes in IP3R1 was <10(-7) m and that the IP3 scarcely affected the conformational states. The structure of IP3R1 without Ca2+, as reconstructed by three-dimensional electron microscopy, had a "mushroom-like" appearance consisting of a large square-shaped head and a small channel domain linked by four thin bridges. The projection image of the "head-to-head" assembly comprising two particles confirmed the mushroom-like side view. The "windmill-like" form of IP3R1 with Ca2+ also contains the four bridges connecting from the IP3-binding domain toward the channel domain. These data suggest that the Ca2+-specific conformational change structurally regulates the IP3-triggered channel opening within IP3R1.  相似文献   

14.
Conclusion In this review, we have described the functional properties and regulation of the InsP3R. Not all aspects of InsP3R function and regulation were covered, the main focus was on the most recent and physiologically important data. Information about the structure, heterogeneity, functional properties, and regulation of the InsP3R is useful for understanding the spatiotemporal aspects of Ca signaling. The combination of biochemical, biophysical and molecular biological techniques has revealed the intricacies of the InsP3R over the past decade. However, questions about the functional differences between various isoforms and splice variants of the InsP3R, the structural determinants responsible for regulation of InsP3R by Ca and ATP, the functional effects of InsP3R phosphorylation and many others remain to be elucidated. Future investigations can be expected to provide answers to these important questions.We thank S. Bezprozvannaya for expert technical assistance. This work was supported by National Institutes of Health grants HL 33026 and GM 39029, and a Grant-in-Aid from the Patrick and Catherine Weldon Donaghue Medical Research Foundation.  相似文献   

15.
The inositol 1,4,5-trisphosphate receptors   总被引:8,自引:0,他引:8  
Bezprozvanny I 《Cell calcium》2005,38(3-4):261-272
The inositol (1,4,5)-trisphosphate receptors (InsP3R) are the intracellular calcium (Ca2+) release channels that play a key role in Ca2+ signaling in cells. Three InsP3R isoforms-InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals. A single InsP3R isoform is expressed in Drosophila melanogaster (DmInsP3R) and Caenorhabditis elegans (CeInsP3R). The progress made during last decade towards understanding the function and the properties of the InsP3R is briefly reviewed in this chapter. The main emphasis is on studies that revealed structural determinants responsible for the ligand recognition by the InsP3R, ion permeability of the InsP3R, modulation of the InsP3R by cytosolic Ca2+, ATP and PKA phosphorylation and on the recently identified InsP3R-binding partners. The main focus is on the InsP3R1, but the recent information about properties of other InsP3R isoforms is also discussed.  相似文献   

16.
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) can be divided in three functionally distinct regions: a ligand-binding domain, a modulatory domain and a channel domain. Numerous regulatory mechanisms including inter- and intra-molecular protein-protein interactions and phosphorylation events act via these domains to regulate the function of the IP(3)R. Regulation at the level of the ligand-binding domain primarily affects the affinity for IP(3). The extent of IP(3)-induced Ca(2+) release (IICR) is, however, not only determined by the affinity for IP(3) but also by the effectiveness of the coupling between ligand binding and channel opening. As a result, regulation as well as malfunction of IICR may be affected by both steps in the activation mechanism. The 3D structures of the two subdomains of the ligand-binding domain have recently been determined by X-ray diffraction analysis. This allows a more detailed molecular explanation of the regulatory events situated at the ligand-binding domain of the IP(3)R. In this review, we will focus on recent structural and functional data on the ligand-binding domain that have extended and clarified the view on the molecular mechanisms of IP(3)R regulation.  相似文献   

17.
1. Inositol 1,4,5-trisphosphate (IP3), an intracellular second messenger, has been shown to be the link between activation of several plasma membrane receptors and Ca2+ release from intracellular, membrane-bound compartments. In this study, the postnatal expression of the canine cerebellum IP3 receptor was investigated by biochemical, ligand binding and immunocytochemical methods. 2. Specific receptor sites for IP3 and the extent of IP3-induced Ca2+ release were quantitated in microsomal fractions isolated from cerebella of developing (0-28 day-old) and adult dogs. The IP3 receptor was detected in newborn animals and adult levels were attained within 3-4 weeks. 3. The time-course of IP3 receptor ontogeny paralleled both growth of Purkinje neurons, as indicated by immunofluorescence of cerebellum cortex cryosections with anti-IP3 receptor antibodies, and synaptogenesis, as judged by Western blotting of the microsomal fractions with anti-synaptophysin antibodies.  相似文献   

18.
Calmodulin (CaM) is a ubiquitous Ca2+ sensor protein that plays an important role in regulating a large number of Ca2+ channels, including the inositol 1,4,5-trisphosphate receptor (IP3R). Despite many efforts, the exact mechanism by which CaM regulates the IP3R still remains elusive. Here we show, using unidirectional 45Ca2+ flux experiments on permeabilized L15 fibroblasts and COS-1 cells, that endogenously bound CaM is essential for the proper activation of the IP3R. Removing endogenously bound CaM by titration with a high affinity (pM) CaM-binding peptide derived from smooth muscle myosin light-chain kinase (MLCK peptide) strongly inhibited IP3-induced Ca2+ release. This inhibition was concentration- and time-dependent. Removing endogenously bound CaM affected the maximum release capacity but not its sensitivity to IP3. A mutant peptide with a strongly reduced affinity for CaM did not affect inhibited IP3-induced Ca2+ release. Furthermore, the inhibition by the MLCK peptide was fully reversible. Re-adding exogenous CaM, but not CaM1234, reactivated the IP3R. These data suggest that, by using a specific CaM-binding peptide, we removed endogenously bound CaM from a high affinity CaM-binding site on the IP3R, and this resulted in a complete loss of the IP3R activity. Our data support a new model whereby CaM is constitutively associated with the IP3R and functions as an essential subunit for proper functioning of the IP3R.  相似文献   

19.
Hormonal regulation of inositol 1,4,5-trisphosphate receptor in rat liver   总被引:4,自引:0,他引:4  
Inositol 1,4,5-trisphosphate (IP3) is a second messenger which induces Ca2+ release from an intracellular store. We have investigated the properties of the [32P]IP3 binding sites in rat liver. Two specific [32P]IP3 receptors with KD of 2.3 and 88 nM and respective capacities of 33 fmol/mg protein and 195 fmol/mg protein have been detected in a crude membrane fraction prepared from rat liver homogenate. The pretreatment of the liver with IP3-dependent hormones increased two-fold the capacity of the high affinity site. This effect was partly reversed by dibutyryl cyclic AMP. Permeabilized hepatocytes also displayed two [32P]IP3 binding sites with KD of 1.5 and 84 nM and respective capacities of 8 and 300 fmol/10(6) cells. We have measured the [32P]IP3 binding and the IP3-induced 45Ca2+ release in the same batch of permeabilized hepatocytes. In a low Mg2+ medium, the EC50 for 45Ca2+ release was in close correlation with the KD for the low affinity site. These data suggest that an equilibrium between two states of the IP3 receptor is regulated by hormone action and the low affinity state is responsible for the intracellular Ca2+ release.  相似文献   

20.
Specific residues in the putative pore helix, selectivity filter, and S6 transmembrane helix of the inositol 1,4,5-trisphosphate receptor were mutated in order to examine their effects on channel function. Mutation of 5 of 8 highly conserved residues in the pore helix/selectivity filter region inactivated the channel (C2533A, G2541A, G2545A, G2546A, and G2547A). Of the remaining three mutants, C2527A and R2543A were partially active and G2549A behaved like wild type receptor. Mutation of a putative glycine hinge residue in the S6 helix (G2586A) or a putative gating residue at the cytosolic end of S6 helix (F2592A) had minimal effects on function, although channel function was inactivated by G2586P and F2592D mutations. The mutagenesis data are interpreted in the context of a structural homology model of the inositol 1,4,5-trisphosphate receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号