首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   

2.
Abstract: The nuclear mitochondrial and synaptosomal fractions of rat brain were each found to contain some 25–30% of the total aldehyde dehydrogenase activity. The cytoplasmic fraction had a very low total aldehyde dehydrogenase activity. There were differences in the distribution of the activity when different aldehydes were used as substrates, suggesting the presence of isoenzymes in the various subcellular compartments. When rats were treated intra-cisternally with 6-hydroxydopamine there was no change in brain aldehyde dehydrogenase activity, although the noradrenaline content and the activities of tyrosine hydroxylase and dopamine-β-hydroxylase were markedly decreased. Treatment with 6-hydroxydopamine also had no significant effect on the aldehyde dehydrogenase activity in retinal homogenates. The results suggest that the aldehyde dehydrogenase activity in rat brain is predominantly outside the catecholaminergic nerve terminals.  相似文献   

3.
1. The properties and distribution of the NAD-linked unspecific aldehyde dehydrogenase activity (aldehyde: NAD+ oxidoreductase EC 1.2.1.3) has been studied in isolated cytoplasmic, mitochondrial and microsomal fractions of rat liver. The various types of aldehyde dehydrogenase were separated by ion exchange chromatography and isoelectric focusing. 2. The cytoplasmic fraction contained 10-15, the mitochondrial fraction 45-50 and the microsomal fraction 35-40% of the total aldehyde dehydrogenase activity, when assayed with 6.0 mM propionaldehyde as substrate. 3. The cytoplasmic fraction contained two separable unspecific aldehyde dehydrogenases, one with high Km for aldehydes (in the millimolar range) and the other with low Km for aldehydes (in the micromolar range). The latter can, however, be due to leakage from mitochondria. The high-Km enzyme fraction contained also all D-glucuronolactone dehydrogenase activity of the cytoplasmic fraction. The specific formaldehyde and betaine aldehyde dehydrogenases present in the cytoplasmic fraction could be separated from the unspecific activities. 4. In the mitochondrial fraction there was one enzyme with a low Km for aldehydes and another with high Km for aldehydes, which was different from the cytoplasmic enzyme. 5. The microsomal aldehyde dehydrogenase had a high Km for aldehydes and had similar properties as the mitochondrial high-Km enzyme. Both enzymes have very little activity with formaldehyde and glycolaldehyde in contrast to the other aldehyde dehydrogenases. They are apparently membranebound.  相似文献   

4.
Abstract— The distribution of carbonic anhydrase was examined in subcellular fractions of perfused rat brain and compared with those of markers for cytosol (lactic dehydrogenase), mitochondrial matrix (glutamic dehydrogenase), and mitochondrial membranes (succinic dehydrogenase). About half of the total carbonic anhydrase was found in particulate fractions, with the greatest part of this in the crude mitochondrial fraction. This fraction was separated into its components on a discontinuous sucrose gradient either as such or after isotonic mechanical disruption with a French pressure cell, and the resultant fractions were characterized by electron microscopy and by assay of marker enzymes.
Carbonic anhydrase was solubilized by mechanical disruption, but not to the same extent as lactic dehydrogenase. The highest specific activity for carbonic anhydrase was found in the myelin fraction of the gradient. A mitochondrial locus for carbonic anhydrase is unlikely, but the presence of the enzyme in synaptosomes remains in question.
Addition of soluble carbonic anhydrase did not significantly increase the activity of particulate fractions. Treatment of particulate fractions with detergent was necessary to reveal latent activity; this procedure resulted in a more than ten-fold increase in the measurable carbonic anhydrase activity of myelin fragments.  相似文献   

5.
The subcellular distribution and certain properties of rat liver aldehyde dehydrogenase are investigated. The enzyme is shown to be localized in fractions of mitochondria and microsomes. Optimal conditions are chosen for detecting the aldehyde dehydrogenase activity in the mentioned fractions. The enzyme of mitochondrial fraction shows the activity at low (0,03-0.05 mM; isoenzyme I) and high (5 mM; isoenzyme II) concentrations of the substrate. The seeming Km and V of aldehyde dehydrogenase from fractions of mitochondria and microsomes of rat liver are calculated, the acetaldehyde and NAD+ reaction being used as a substrate.  相似文献   

6.
The subcellular distribution and properties of four aldehyde dehydrogenase isoenzymes (I-IV) identified in 2-acetylaminofluorene-induced rat hepatomas and three aldehyde dehydrogenases (I-III) identified in normal rat liver are compared. In normal liver, mitochondria (50%) and microsomal fraction (27%) possess the majority of the aldehyde dehydrogenase, with cytosol possessing little, if any, activity. Isoenzymes I-III can be identified in both fractions and differ from each other on the basis of substrate and coenzyme specificity, substrate K(m), inhibition by disulfiram and anti-(hepatoma aldehyde dehydrogenase) sera, and/or isoelectric point. Hepatomas possess considerable cytosolic aldehyde dehydrogenase (20%), in addition to mitochondrial (23%) and microsomal (35%) activity. Although isoenzymes I-III are present in tumour mitochondrial and microsomal fractions, little isoenzyme I or II is found in cytosol. Of hepatoma cytosolic aldehyde dehydrogenase activity, 50% is a hepatoma-specific isoenzyme (IV), differing in several properties from isoenzymes I-III; the remainder of the tumour cytosolic activity is due to isoenzyme III (48%). The data indicate that the tumour-specific aldehyde dehydrogenase phenotype is explainable by qualitative and quantitative changes involving primarily cytosolic and microsomal aldehyde dehydrogenase. The qualitative change requires the derepression of a gene for an aldehyde dehydrogenase expressed in normal liver only after exposure to potentially harmful xenobiotics. The quantitative change involves both an increase in activity and a change in subcellular location of a basal normal-liver aldehyde dehydrogenase isoenzyme.  相似文献   

7.
Circadian variations in the activities of aldehyde dehydrogenase (ALDH) isozymes in the subcellular fractions of the brain and liver were investigated in male and female mice of C57BL/6J strain. The rhythms in high Km-ALDH activities of brain and liver mitochondrial fractions which existed in ordinary light-dark cycle were not observed in animals maintained in the continuous darkness for two weeks. The rhythms in high Km-ALDH activities of hepatic soluble and microsomal fractions existed in both ordinary cycle and total darkness but the rhythmic phases were different. In the low Km-ALDH activity of hepatic mitochondrial fraction, the circadian rhythm was similar in two lighting conditions. There was sex difference in the existence of the circadian rhythm. It seems that the ALDH activity of mice is influenced by light-dark cycle and sex hormones.  相似文献   

8.
The effect of ethanol ingestion on aldehyde dehydrogenase activity in the subcellular fractions of livers from 14 pair-fed male Sprague-Dawley rats was tested. Enzymatic assays were performed at two different concentrations of propionaldehyde (0.068 and 13.6 mM) sufficient to saturate enzymes with high and low affinities for propionaldehyde, respectively. The effect of alcohol ingestion varied depending on the subcellular fraction tested and the propionaldehyde concentration used in the assay. There was a 60% increase in the activity of aldehyde dehydrogenase with high affinity for propionaldehyde in the mitochondrial membranes. Conversely there was a 50% decrease in the activity of aldehyde dehydrogenases with high affinity for propionaldehyde in the microsomal fraction. There was also a 58% decrease in the activity of enzymes from the mitochondrial matrix with low affinity for propionaldehyde. The results suggest that differences in the assay systems employed may account for the conflicting results obtained by previous investigators of the effect of ethanol feeding.  相似文献   

9.
The effect of ethanol ingestion on aldehyde dehydrogenase activity in the subcellular fractions of livers from 14 pair-fed male Sprague-Dawley rats was tested. Enzymatic assays were performed at two different concentrations of propionaldehyde (0.068 and 13.6 mM) sufficient to saturate enzymes with high and low affinities for propionaldehyde, respectively. The effect of alcohol ingestion varied depending on the subcellular fraction tested and the propionaldehyde concentration used in the assay. There was a 60% increase in the activity of aldehyde dehydrogenase with high affinity for propionaldehyde in the mitochondrial membranes. Conversely there was a 50% decrease in the activity of aldehyde dehydrogenases with high affinity for propionaldehyde in the microsomal fraction. There was also a 58% decrease in the activity of enzymes from the mitochondrial matrix with low affinity for propionaldehyde. The results suggest that differences in the assay systems employed may account for the conflicting results obtained by previous investigators of the effect of ethanol feeding.  相似文献   

10.
SH-reagents: tetraethylthiuram disulphide (TETD), 5,5'-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (p-ChMB), N-ethylmaleimide (NEM) were studied for their effect on the aldehyde dehydrogenase activity of mitochondrion (isoenzymes I and II) and microsome (isoenzyme II) fractions of the rat liver. TETD is established to inhibit isoenzyme I and isoenzyme II activity of mitochondrial aldehyde dehydrogenase by 100 and 50%, respectively, and the microsomal enzyme activity by 20%. DTNB and NEM inhibit 30-50% of the activity in two isoforms of mitochondrial aldehyde dehydrogenase having no effect on the enzymic activity in microsomes; p-ChMB inhibits completely the activity of the enzyme under study both in the mitochondrial and microsomal fractions. A conclusion is drawn that SH-groups are very essential for manifestation of the catalytic activity in the NAD+-dependent aldehyde dehydrogenase from mitochondrial and microsomal fractions.  相似文献   

11.
T Koivula 《Life sciences》1975,16(10):1563-1569
The subcellular distribution of human liver aldehyde dehydrogenases (E.C. 1.2.1.3) have been studied and the different types have been separated by ion exchange chromatography. The cytoplasmic fraction contained at least two chromatographically separable aldehyde dehydrogenases, which accounted for about 30% of the total activity. One of the cytoplasmic aldehyde dehydrogenases had a high Km for aldehydes (in the millimolar range). A considerable part of the activity found in this fraction was due to an enzyme with a low Km for aldehydes (in the micromolar range). It had properties similar to those of the mitochondrial main enzyme fraction, from where it may have originated as a contamination during subcellular fractionation. Specific betaine aldehyde and formaldehyde dehydrogenases were separated from these unspecific activities in the cytoplasmic fraction. In mitochondria, where more than 50% of the total aldehyde dehydrogenase activity was found, there was also evidence for slight high-Km activity. The microsomal fraction contained only a high-Km aldehyde dehydrogenase, which accounted for about 10% of the total activity.  相似文献   

12.
Freshly obtained human term placentae were subjected to subcellular fractionation to study the localization of NAD-dependent aldehyde dehydrogenases. Optimal conditions for the cross-contamination-free subcellular fractionation were standardized as judged by the presence or the absence of appropriate marker enzymes. Two distinct isozymes, aldehyde dehydrogenase I and II, were detected in placental extracts after isoelectric focusing on polyacrylamide gels. Based on a placental wet weight, about 80% of the total aldehyde dehydrogenase activity was found in the cytosolic acid and about 10% in the mitochondrial fraction. The soluble fraction (cytosol) contained predominantly aldehyde dehydrogenase II which has a relatively high Km (9 mmol/l) for acetaldehyde and is strongly inhibited by disulfiram. The results indicate that cytosol is the main site for acetaldehyde oxidation, but the enzyme activity is too slow to prevent the placental passage of normal concentrations of blood acetaldehyde (less than 1 mumol/l) produced by maternal ethanol metabolism.  相似文献   

13.
M L Sagrista  J Bozal 《Biochimie》1987,69(3):205-214
Chicken liver crude mitochondrial fraction showed lactate dehydrogenase activity (6.5% of cytoplasmic enzyme). Most of the mitochondrial lactate dehydrogenase was solubilized by sonication of the mitochondrial fraction in 0.15 M NaCl, pH 6. Total extracted lactate deshydrogenase activity was 3-fold higher than the initial pellet activity. Different isoenzymatic compositions were observed for cytosoluble and mitochondrial extracted lactate dehydrogenase. The pI, values of the 5 lactate dehydrogenase isoenzymes were found to be independent of their origin. The cytosoluble lactate dehydrogenase and the separated H4,H3M and H2M2 isoenzymes were able to bind to the chicken liver mitochondrial fraction in 5 mM sodium phosphate buffered medium, and could be solubilized afterwards with 0.15 M NaCl, pH 6. The enzyme bound to the mitochondrial fraction was less active than the soluble one. Particle saturation by the bound enzyme occurred with all mitochondrial fractions assayed. According to the Langmuir isotherm, the non-sonicated mitochondrial fractions contain a single type of binding sites for lactate dehydrogenase; in contrast, the sonicated mitochondrial fraction should contain different binding sites. Chicken liver crude or sonicated active mitochondrial fractions showed a hyperbolic behavior with respect to NADH and a non-hyperbolic one with respect to pyruvate. This mechanism is different from the bi-bi compulsory order mechanism of the soluble enzyme. With hydroxypyruvate as the substrate, the active mitochondrial fraction fit a sequential mechanism but lost the rapid-equilibrium characteristics of the soluble enzyme.  相似文献   

14.
R Kramar  K Kremser 《Enzyme》1984,31(1):17-20
Treatment over a 3-week period of male rats with the hypolipidemic drug clofibrate results in a more than twofold increase of aldehyde dehydrogenase activity in liver homogenate and mitochondrial fraction. As a comparable rise is also found in the postmitochondrial fraction, it is suggested that not only the mitochondrial but also the microsomal moiety of aldehyde dehydrogenase is induced by clofibrate. Possibly the known enhancement of ethanol catabolism and some protective effect on the liver of clofibrate-treated animals is due, at least in part, to the increased acetaldehyde oxidation by liver aldehyde dehydrogenase.  相似文献   

15.
E G Platzer 《Life sciences》1977,20(8):1417-1424
Subcellular fractions of the bird malaria, Plasmodium lophurae were prepared by differential centrifugation. Cytochrome oxidase activity was located in the mitochondrial fraction. A major portion of glutamate dehydrogenase activity was found in the mitochondrial fraction with the remainder in the ribosomal and cytosolic fractions. Malate dehydrogenase and serine hydroxymethyltransferase activities were located primarily in the cytosolic fraction.  相似文献   

16.
In normal rat liver, aldehyde dehydrogenase (Aldehyde:NAD+ oxidoreductase, EC 1.2.1.3; ALDH) is found primarily in mitochondrial and microsomal fractions. During hepatocarcinogenesis, an additional tumor-associated aldehyde dehydrogenase (T-ALDH) is detectable in the cytosol of preneoplastic and neoplastic cells. We report here differences in the ALDH distribution pattern in different rat hepatoma cell lines compared to normal rat hepatocytes. Of the four basal ALDH enzymes, one mitochondrial ALDH and one microsomal ALDH account for 96% of total ALDH molecules detectable with our probes in normal hepatocytes. The other two mitochondrial and microsomal ALDH enzymes are only detectable in the appropriate subcellular fraction from large populations of cells. The tumor-associated ALDH is not detectable in normal hepatocytes. In addition to varying amounts of T-ALDH in the six different rat hepatoma cell lines examined, differences in the amounts of mitochondrial and microsomal ALDHs also occur in both high and low T-ALDH activity hepatoma cell lines. Each of five ALDH enzymes examined has a characteristic half-life varying from 45 min to 95 h.  相似文献   

17.
The subcellular distribution of aldehyde dehydrogenase activity was determined in human liver biopsies by analytical sucrose density-gradient centrifugation. There was bimodal distribution of activity corresponding to mitochondrial and cytosolic localizations. At pH 9.6 cytosolic aldehyde dehydrogenase had a lower apparent Kappm for NAD (0.03 mmol l-1), than the mitochondrial enzyme (Kappm NAD = 1.1 mmol l-1). Also, the pH optimum for cytosolic aldehyde dehydrogenase activity (pH 7.5) was lower than that for the mitochondrial enzyme activity (pH 9.0), and the cytosolic enzyme activity was more sensitive to inhibition by disulfiram in vitro. Disulfiram (40 mumol l-1) caused a 70% reduction in cytosolic aldehyde dehydrogenase activity, but only a 30% reduction in mitochondrial enzyme activity after 10 min incubation. The liver cytosol may therefore be the major site of acetaldehyde oxidation in vivo in man.  相似文献   

18.
Aldehyde dehydrogenase activity (KF 1.2.1.3) of cytosol fractions of brain structures (hypothalamus, midbrain and new cortex) as well as dophamine content in these structures were studied in comparative aspect in rats preferring and rejection ethanol. It has been shown that there were two isoforms of aldehyde dehydrogenases (aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2) in cytosol fractions of all investigated brain structures of animals preferring ethanol while only aldehyde dehydrogenase 2 has been found in the new cotex of rats rejecting ethanol. Thus, aldehyde-dehydrogenase activity is higher in the animals preferring ethanol than in those ones rejecting ethanol. Content of dophamine in the rats preferring ethanol is higher than in those ones rejecting ethanol both in the hypothalamus and new cortex. Differences between the studied groups of animals can underlie the pathologic attraction to alcohol.  相似文献   

19.
Defatted soybean extract was fractionated into protein fractions and low molecular weight fractions with gel filtration. NAD-dependent aldehyde dehydrogenase from bovine liver mitochondria and from yeast was found to oxidize aldehyde in both fractions. These enzymes, therefore, were used to determine the quantity of aldehyde. When the protein fraction obtained by gel filtration was subjected to gel filtration again, aldehyde was recovered in the protein fractions. The level of aldehyde in the protein fractions was unchanged before and after digestion of the protein with pepsin. When the soybean extract was incubated beforehand with aldehyde dehydrogenase and NAD+ and the subjected to gel filtration, no aldehyde was detected in the protein fractions. These results indicate that aldehyde dehydrogenase acts on the soybean protein-bound aldehyde. Alcohol dehydrogenase from horse liver in the presence of NADH did not convert the bound aldehyde to alcohol.

A large portion of the aldehyde in the extract was separated from the protein by acid precipitation of the protein. Aldehyde dehydrogenase acts on the aldehyde remaining in the protein after acid precipitation. Thus acid precipitation helps to save NAD+ required for complete removal of aldehyde from the soybean protein by aldehyde dehydrogenase.  相似文献   

20.
p-Hydroxyacetophenone was coupled to epoxy-activated Sepharose 6B to generate an affinity chromatographic matrix to purify aldehyde dehydrogenase. Purified beef liver mitochondrial aldehyde dehydrogenase specifically bound to the support and could be eluted with p-hydroxyacetophenone. A post-ammonium sulfate (30-55%) fraction of bovine liver was applied to the affinity gel column and aldehyde dehydrogenase was effectively purified, although not to complete homogeneity, indicating the potential selectivity of the matrix. Both beef liver cytosolic and mitochondrial aldehyde dehydrogenase bound to the column. A post-Cibacron blue Sepharose Cl-6B affinity-fractionated liver mitochondrial aldehyde dehydrogenase was purified to complete homogeneity by p-hydroxyacetophenone-Sepharose, thus eliminating the need for the isoelectric focusing step often employed. p-Hydroxyacetophenone was found to be a competitive inhibitor against propionaldehyde and noncompetitive against NAD. Escherichia coli lysates of recombinantly expressed aldehyde dehydrogenase were purified from E. coli lysates with one major 25-kDa protein contaminant also binding to the column, as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 25-kDa contaminant was found to be chloramphenicol acetyl transferase from sequence analysis and binding studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号