首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One prominent cytoskeletal feature of non-mammalian vertebrate erythrocytes is the marginal band (MB), composed of microtubules. However, there have been several reports of MB-associated F-actin. We have further investigated the function of MB-associated F-actin, using newt erythrocytes having large, thick MBs. Confocal microscopy revealed a distinctive band of F-actin colocalizing point- by-point with MB microtubules. Furthermore, the F-actin band was present in isolated elliptical MBs, but absent in membrane skeletons lacking MBs. F-actin depolymerizing agents did not affect F-actin band integrity in isolated MBs, indicating its non-dynamic state. However, exposure to elastase resulted in F-actin removal and MB circularization. These results provide evidence of a strong association of F-actin with MB microtubules in mature ellipsoidal erythrocytes. To assess the true extent of mechanical stress on the cytoskeleton, erythrocytes were observed by video microscopy during flow in vivo. Moving with long axis parallel to flow direction, cells underwent reversible shape distortion as they collided vigorously with other erythrocytes and vessel walls. In addition, cells twisted into figure-8 shapes, a cytoskeletal property that may provide physiological advantages during flow. Our results, together with those of others, yield a consistent picture in which developing erythrocytes undergo transition from spheroids to immature discoids to mature ellipsoids. The causal step in discoid formation is biogenesis of circular MBs with sufficient flexural rigidity to determine cell shape. F-actin binding to MB microtubules then creates a composite system, enhancing flexural rigidity to produce and maintain ellipsoidal shape during the physical challenges of blood flow in vivo.  相似文献   

2.
The microtubules of mature nucleated erythrocytes are organized into a marginal band that is confined to a single plane at the periphery and that contains essentially the same number of microtubule profiles in each individual cell. Developing erythrocytes can be isolated in homogeneous and synchronously developing populations from chicken embryos. For these reasons, these cells offer a particularly accessible system for study of the pathway leading to a specific microtubule structure in a normal, terminally differentiated animal cell. Along this developmental course, striking changes occur in the properties of the microtubules. Between the postmitotic cell and the formation of the band, a novel arrangement is found: bundles of laterally associated microtubules in each cell, coursing through the cytoplasm but not confined to the periphery. The microtubule organizing centers evident at early stages disappear by the time the band forms. The microtubules in early cells are readily depolymerized by drugs, but that drug sensitivity is lost in the mature cells. The microtubule arrangement of mature cells is faithfully recapitulated after reversible depolymerization, while that of the immature cells is not. Finally, as the band forms, the microtubules and microfilaments increasingly become coaligned. In sum, the microtubules of immature cells have many properties in common with those of cultured cells, but during maturation those properties change. The results suggest that lateral interactions become increasingly important in stabilizing and organizing the microtubules. The properties of marginal band microtubules, and comparable properties of axonal microtubules, may reflect differences between the requirements for cytoskeletal structures of cycling cells and terminally differentiated cells.  相似文献   

3.
Chicken erythroblasts transformed with avian erythroblastosis virus or S13 virus provide suitable model systems with which to analyze the maturation of immature erythroblasts into erythrocytes. The transformed cells are blocked in differentiation at around the colony-forming unit-erythroid stage of development but can be induced to differentiate in vitro. Analysis of the expression and assembly of components of the membrane skeleton indicates that these cells simultaneously synthesize alpha-spectrin, beta-spectrin, ankyrin, and protein 4.1 at levels that are comparable to those of mature erythroblasts. However, they do not express any detectable amounts of anion transporter. The peripheral membrane skeleton components assemble transiently and are subsequently rapidly catabolized, resulting in 20-40-fold lower steady-state levels than are found in maturing erythrocytes. Upon spontaneous or chemically induced terminal differentiation of these cells expression of the anion transporter is initiated with a concommitant increase in the steady-state levels of the peripheral membrane-skeletal components. These results suggest that during erythropoiesis, expression of the peripheral components of the membrane skeleton is initiated earlier than that of the anion transporter. Furthermore, they point a key role for the anion transporter in conferring long-term stability to the assembled erythroid membrane skeleton during terminal differentiation.  相似文献   

4.
《The Journal of cell biology》1984,98(6):2118-2125
Marginal bands (MBs) of microtubules are believed to function during morphogenesis of nonmammalian vertebrate erythrocytes, but there has been little evidence favoring a continuing role in mature cells. To test MB function, we prepared dogfish erythrocytes with and without MBs at the same temperature by (a) stabilization of the normally cold- labile MB at 0 degree C by taxol, and (b) inhibition of MB reassembly at room temperature by nocodazole or colchicine. We then compared the responses of these cells to mechanical stress by fluxing them through capillary tubes. Before fluxing , cells with or without MBs had normal flattened elliptical shape. After fluxing , deformation was consistently observed in a much greater percentage of cells lacking MBs. The difference in percent deformation between the two cell types was highly significant. That the MB is an effector of cell shape was further documented in studies of the formation of singly or doubly pointed dogfish erythrocytes that appear during long-term incubation of normal cells at room temperature. On-slide perfusion experiments revealed that the pointed cells contain MBs of corresponding pointed morphology. Incubation of cells with and without MBs showed that they become pointed only when they contain MBs, indicating that the MB acts as a flexible frame which can deform and support the cell surface from within. To test this idea further, cells with and without MBs were exposed to hyperosmotic conditions. Many of the cells without MBs collapsed and shriveled , whereas those with MBs did not. The results support the view that the MB has a continuing function in mature erythrocytes, resisting deformation and/or rapidly returning deformed cells to an efficient equilibrium shape in the circulation.  相似文献   

5.
Occurrence of microtubules during erythropoiesis in Llama, Lama glama   总被引:1,自引:0,他引:1  
Studies on the ellipsoid erythroblasts of Llama, L a m gluma, L. during erythropoiesis showed the appearance of the marginal band composed of approximately 29 microtubules. As the maturation of erythrocytes goes on, the number of marginal band microtubules diminishes. No microtubules were found in mature erythrocytes of Llama.  相似文献   

6.
Summary The role of microtubules and ions in cell shaping was investigated in differentiating guard cells of Allium using light and electron microscopy and cytochemistry. Microtubules appear soon after cytokinesis in a discrete zone close to the plasmalemma adjacent to the common wall between guard cells. The microtubules fan out from this zone, which corresponds to the future pore site, towards the other sides of the cell. Soon new cellulose microfibrils are deposited on the wall adjacent to the microtubules and oriented parallel to them. As the wall thickens, the shape of the cell shifts from cylindrical to kidney-like. Studies with polarized light show that guard cells gradually assume a birefringence pattern during development characteristic of wall microfibrils radiating away from the pore site. Retardation increases from 10 Å when cells just begin to take shape, to 80–100 Å at maturity. Both microfibril and microtubule orientation remain constant during development. Observations on aberrant cells including those produced under the influence of drugs such as colchicine, which leads to loss of microtubules, abnormal wall thickenings and disruption of wall birefringence, further support the role of microtubules in cell shaping through their function in the localization of wall deposition and the orientation of cellulose microfibrils in the new wall layer. Potassium first appears in guard mother cells before division and rapidly accumulates afterwards during cell shaping, as judged by the cobaltinitrite reaction. Some chloride and perhaps organic acid anions also accumulate. Thus, these ions, which are known to play a role in the function of mature guard cells, also seem to be important in the early growth and shaping of these cells.Abbreviations IPC isopropyl-N-phenylcarbamate - CB cytochalasin B - GMC guard mother cell - MTOC microtubule organizing center  相似文献   

7.
Summary Using immunocytochemical techniques, tubulin distribution in various stages of meiosis and embryo sac development was studied. In the archespore cell some microtubules appeared to be randomly oriented. During zygotene and pachytene, when the cell volume increases, a large number of microtubules in dispersed configurations and bundles were observed. During this stage the nucellar cells divide, and their parallel cortical microtubules play an important role in preparing the direction of cell enlargement. The protoderm cells show anticlinal-directed cortical microtubules. It can be concluded that the enlargement of the meiocyte during these early meiotic stages is influenced both by its own cytoskeleton and by growth of the nucellus. Thereafter, the microtubules function directly in meiosis and disappear for the greater part until the two-nucleate coenocyte is formed. In a four-nucleate coenocyte microtubules reappear around the nucleus; in a young synergid, randomly oriented microtubules are involved in cell shaping during the formation of the filiform apparatus; in the synergids of the mature embryo sac, many parallel arrays of microtubules are present. Microtubules are less abundant in other cells. It is concluded that the cytomorphogenesis of the developing coenocyte and embryo sac are due to cell growth of the nucellar cells together with vacuolation of the coenocyte.  相似文献   

8.
Mammalian erythrocytes are highly specialized cells that have adapted to lose their nuclei and cellular components during maturation to ensure oxygen delivery. Nuclear extrusion, the most critical event during erythropoiesis, represents an extreme case of asymmetric partitioning that requires a dramatic reorganization of the cytoskeleton. However, the precise role of the microtubule cytoskeleton in the enucleation process remains controversial. In this study, we show that microtubule reorganization is critical for microtubule clearance and nuclear extrusion during erythropoiesis. Using a rodent anemia model, we found that microtubules were present in erythroblasts and reticulocytes but were undetectable in erythrocytes. Further analysis demonstrated that microtubules became disordered in reticulocytes and revealed that microtubule stabilization was critical for tubulin degradation. Disruption of microtubule dynamics using the microtubule-stabilizing agent paclitaxel or the microtubule-destabilizing agent nocodazole did not affect the efficiency of erythroblast enucleation. However, paclitaxel treatment resulted in the retention of tubulin in mature erythrocytes, and nocodazole treatment led to a defect in pyrenocyte morphology. Taken together, our data reveals a critical role for microtubules in erythrocyte development. Our findings also implicate the disruption of microtubule dynamics in the pathogenesis of anemia-associated diseases, providing new insight into the pathogenesis of the microtubule-targeted agent-associated anemia frequently observed during cancer chemotherapy.  相似文献   

9.
Macrophages from the insect Spodoptera eridania possess membrane receptors for unmodified avian and mammalian erythrocytes, with which they form spontaneous rosettes. Rosette formation occurs in the absence of serum proteins and divalent cations. Individual macrophages bear receptors for several types of red cells. The level of naturally-occurring hemagglutinins against a particular test erythrocyte is not correlated with macrophage reactivity against that red cell. In contrast with mammalian macrophages, neuraminidase treatment of either hemocytes or erythrocytes does not cause a marked enhancement of binding. Pretreatment of macrophages or erythrocytes with cytochalasin B causes reversible inhibition of resetting probably by interfering with normal microfilament function, suggesting that optimal binding occurs when membranes are functioning normally on both macrophages and red cells. Colchicine and vinblastine do not influence resetting; therefore, microtubules are probably not involved in erythrocyte binding.  相似文献   

10.
A well known physiological property of erythrocytes is that they can aggregate and form a rouleau. We present a theoretical analysis of erythrocyte shapes in a long rouleau composed of cells with identical sizes. The study is based on the area difference elasticity model of lipid membranes, and takes into consideration the adhesion of curved axisymmetric membranes. The analysis predicts that the erythrocytes in the rouleau can have either a discoid or a cup-like shape. These shapes are analogous to the discoid and stomatocyte shapes of free erythrocytes. The transitions between the discoid and cup-like shapes in the rouleau are characterized. The occurrence of these transitions depends on three model parameters: the cell relative volume, the preferred difference between the areas of the membrane bilayer leaflets, and the strength of the adhesion between the membranes. The cup-like shapes are favored at small relative volumes and small preferred area differences, and the discoid shapes are favored at large values of these parameters. Increased adhesion strength enlarges the contact area between the cells, flattens the cells, and consequently promotes the discoid shapes.  相似文献   

11.
Maturing erythroblasts and erythrocytes were studied in chickens and adult hens to provide more information on the presence and frequency of various nucleolar types in these cells. Nucleoli were present at all stages of erythroblastic and erythrocytic development except in the case of a few reticulocytes and the mature erythrocytes. The number of nucleoli per cell (expressed as the nucleolar coefficient) reached a maximum at the stage of the polychromatic erythroblast. Early erythroblasts were characterized by the presence of compact nucleoli or nucleoli with nucleolonemata. Rings shaped nucleoli and micronucleoli increased in number with further maturation. Cells of the final erythroblast stage (orthochromatic erythroblasts) contained mostly micronucleoli, and micronucleoli alone were present in reticulocytes and mature erythrocytes.  相似文献   

12.
13.
The generative cell (GC) development during three sequentialstages of Magnolia x soulangeana pollen grain maturation wasinvestigated by light and electron microscopy. Plastids werenot identified in this cell but mitochondria, Golgi bodies andvesicles as well as rough endoplasmic reticulum profiles werealways present. Microtubules were also present, their numberincreasing and their disposition varying during GC maturation.The most conspicuous components of the GC cytoplasm were themicrobodies. The latter were few in number in the newly formedGC, and the appearance of their matrix was different from laterdevelopmental stages. A clear microbodial proliferation occurredin the GC during an intermediate stage of pollen maturation.Then, the microbody matrix was either fibrillar to granularas in the vegetative cell microbodies or very dense and compact.The polymorphism and size range and the frequent aggregationof these organelles in one or more clusters were also noteworthy.Tilting of semithin sections as well as the analysis of serialsections suggested that a number or enlarged and irregularlyshaped microbodies co-exist with smaller and more sphericalones, the latter probably originating by budding. In the GCof the mature pollen the microbody-like organelles were in generalmore uniform both in shape and size. The cytochemical test ofDAB was positive in the microbodies of both the pollen cells,thus demonstrating their peroxisomic nature. The function ofthe microbodies in the GC is not clear. In this cell, a fewlipid droplets only exist during the first developmental stageand the microbodies were apparently unrelated to any other organelle.Possibly, these are unspecialized microbodies which are paternallytransmitted, but it is not excluded that, temporarily, theymay play some special role during GC maturation.Copyright 1994,1999 Academic Press Peroxisomes, generative cell, pollen maturation, Magnolia x soulangeana Soul.-Bod  相似文献   

14.
Summary The intracellular localization and isozyme distribution of hexokinase were studied during rabbit reticulocyte maturation and aging. In reticulocytes 50% of the enzyme was particulate while in the mature erythrocytes all the hexokinase activity was soluble. The bound enzyme co-sediments with mitochondria and by column chromatography it was found to be hexokinase Ia. The cytosol of reticulocytes contains hexokinase Ia (38%) and hexokinase Ib (62%) while the mature erythrocytes contain only hexokinase Ia. The amount of bound hexokinase decreases very quickly during cell maturation and aging as was shown by following in vivo reticulocyte maturation or by analysis of hexokinase compartmentation in cells of different ages, obtained by density gradient ultracentrifugations. A role for this intracellular distribution of hexokinase is suggested.  相似文献   

15.
Summary The marginal band of nucleated erythrocytes in the toadfish is found, in electron micrographs, to be composed of about twenty-five microtubules approximately 200 Å in diameter. These form a bundle that encircles the erythrocyte just beneath the plasma membrane. These observations support the interpretation of Meves 1904, that this relatively stiff equatorial band may contribute to the maintenance of the discoid shape of nucleated erythrocytes in fish, amphibians, reptiles and birds.Similar microtubules form an annular bundle encircling the nucleus in fish thrombocytes. The number of tubular elements involved here is in excess of one hundred and they are located deep to the ectoplasmic layer instead of immediately beneath the plasmalemma. The term endoplasmic ring is therefore proposed for this structure.Comparative observations on nucleated erythrocytes of various species are presented showing that the density and fine structure of the material occupying the interchromosomal areas of the nucleus, always matches the cytoplasm and is related to the hemoglobin concentration of the species. These ultrastructural observations are consistent with the optical absorption and biochemical findings of other investigators indicating the presence of intranuclear hemoglobin in nucleated erythrocytes. Crystalline order is occasionally found in electron micrographs of the hemoglobin rich areas of the nucleus in toadfish erythrocytes but is not found in the cytoplasm.This research was supported by grant G-12916 of the National Science Foundation.  相似文献   

16.
Cytological changes accompanying the maturation of erythrocytes in the “Pacific hagfish” (Eptatretus stoutii) were studied. Great numbers of immature and mitotically dividing red blood cells in the peripheral circulation of the hagfish appear to indicate that extensive differentiation and proliferation occurs in the blood stream of this animal. The immature erythrocytes contained mitochondria, Golgi membranes, centrioles, microtubules and a high density of ribosomes in the cytoplasm. Intermediate stages revealed lysosomes in the cytoplasm. With progressive differentiation the hagfish erythrocytes accumulate hemoglobin and lose most of their cytoplasmic organelles. The various cytoplasmic organelles are apparently lost through a degradation process brought about by lysosomal autolysis. The undigested products of degradation such as mitochondrial and other intercellular membranes are apparently extruded by way of the plasma membrane. The plasma membrane of young as well as mature erythrocytes display evidence of intense pinocytotic activity. The nucleolus undergoes a reduction in size with progressive maturation. The cytoplasm of mature erythrocytes consists predominantly of hemoglobin. An equatorial microtubular marginal band is identifiable in differentiating erythrocytes.  相似文献   

17.
《The Journal of cell biology》1989,109(6):3005-3013
We have used murine splenic erythrolasts infected with the anemia- inducing strain of Friend virus (FVA cells), as an in vitro model to study cytoskeletal elements during erythroid maturation and enucleation. FVA cells are capable of enucleating in suspension culture in vitro, indicating that associations with an extracellular matrix or accessory cells are not required for enucleation to occur. The morphology of FVA cells undergoing enucleation is nearly identical to erythroblasts enucleating in vivo. The nucleus is segregated to one side of the cell and then appears to be pinched off resulting in an extruded nucleus and reticulocyte. The extruded nucleus is surrounded by an intact plasma membrane and has little cytoplasm associated with it. Newly formed reticulocytes have an irregular shape, are vacuolated and contain all cytoplasmic organelles. The spatial distribution of several cytoskeletal proteins was examined during the maturation process. Spectrin was found associated with the plasma membrane of FVA cells at all stages of maturation but was segregated entirely to the incipient reticulocyte during enucleation. Microtubules formed cages around nuclei in immature FVA cells and were found primarily in the incipient reticulocyte in cells undergoing enucleation. Reticulocytes occasionally contained microtubules, but a generalized diffuse distribution of tubulin was more common. Vimentin could not be detected at any time in FVA cell maturation. Filamentous actin (F-actin) had a patchy distribution at the cell surface in the most immature erythroblasts, but F-actin bundles could be detected as the cells matured. F-actin was found concentrated between the extruding nucleus and incipient reticulocyte in enucleating erythroblasts. Newly formed reticulocytes exhibited punctate actin fluorescence whereas extruded nuclei lacked F-actin. Addition of colchicine, vinblastine, or taxol to cultures of FVA cells did not affect enucleation. In contrast, cytochalasin D caused a complete inhibition of enucleation that could be reversed by washing out the cytochalasin D. These results demonstrate that F-actin plays a role in enucleation while the complete absence of microtubules or excessive numbers of polymerized microtubules do not affect enucleation.  相似文献   

18.
In the evergreen leaves of Quercus suber, stomata play a major role in adaptation to drought and temperature stress. The leaf is of zygostomic type and has about 430 stomata per square milimeter of abaxial leaf surface. The stomatal complex is of the anomocytic type. The guard cells protrude from the epidermal plane. The guard cell nucleus contains heterochromatin in small granules. The guard cell cytoplasm is characterised by a large number of well developed mitochondria, amyloplasts with stroma and grana, and a well developed cytoskeleton with a cortical array of microtubules oriented pa railed to the slit axis that persist even in mature cells. Guard cell walls are asymmetrically thickened and devoid of plasmodesmata. No area of cell walls was free of cuticle or covered by a thin cuticular layer and apparently no area of limited cuticular development provides evaporation when the stomata are closed.  相似文献   

19.
An acetylated modification of a tumor-associated ganglioside GD3 (9-O-AcGD3) is expressed in certain tumors and present during early stages of development in different tissues. However, the status and the role of 9-O-AcGD3 in the erythroid progenitor cells remain unexplored. Here, we report the level of 9-O-AcGD3 during erythropoiesis in bone marrow is down regulated during maturation. Signaling via 9-O-AcGD3 induces alteration of morphology and membrane characteristics of mature erythrocytes. This process also induces, a cell death program in these erythrocytes even in the absence of nucleus, mitochondria and other cell organelles sharing features of apoptosis in nucleated cells like membrane alterations, vesicularization, phosphatidyl serine exposure, activation of cysteine proteases like caspase-3. This is the first report of a programmed cell death pathway in mature erythrocytes, triggered by 9-O-AcGD3 contrary to their anti-apoptotic role in lymphoblasts, which suggests a cell specific role of this O-acetyl ester of GD3.  相似文献   

20.
By optical microscopy, it has been shown that the addition of La3+ ions induced transformation in the shape of erythrocytes, their aggregation and fusion. After addition of La3+ erythrocytes transform into stomatocytes. It was found that the red cell shape recovered to discoid after addition of EDTA. Neither transformation of shape nor aggregation or fusion of erythrocytes could be detected after their treatment with glutaraldehyde. A possible mechanism and significance of the shape transformation in aggregation of erythrocytes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号