首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND AND PURPOSE: In mice, genetic engineering involves two general approaches-addition of an exogenous gene, resulting in transgenic mice, and use of knockout mice, which have a targeted mutation of an endogenous gene. The advantages of these approaches is that questions can be asked about the function of a particular gene in a living mammalian organism, taking into account interactions among cells, tissues, and organs under normal, disease, injury, and stress situations. METHODS: Review of the literature concentrating principally on knockout mice and questions of unexpected phenotypes, lack of phenotype, redundancy, and effect of genetic background on phenotype will be discussed. CONCLUSION: There is little gene redundancy in mammals; knockout phenotypes exist even if none are immediately apparent; and investigating phenotypes in colonies of mixed genetic background may reveal not only more phenotypes, but also may lead to better understanding of the molecular or cellular mechanism underlying the phenotype and to discovery of modifier gene(s).  相似文献   

2.
The binding of agonists and antagonists to the beta-adrenergic receptor (beta AR) is postulated to involve an ionic interaction between the amine group of the ligand and the carboxylate side chain of Asp113 in the third hydrophobic domain of the receptor. To explore the importance of this interaction in the binding of ligands to the beta AR, a Ser residue was substituted for Asp113, and the ability of this mutant receptor to respond to compounds which could potentially interact with the hydroxyl side chain of the Ser residue was assessed. The mutant receptor was fully activated by catechol-containing esters and ketones, compounds which did not activate the wild-type beta AR. The demonstration that the molecular substitution of a single amino acid residue can alter the ligand binding specificity of the beta AR provides evidence that the chemical nature of this residue is a critical determinant in the recognition site of the receptor. Further, the ability to modify the specificity of a receptor by the replacement of amino acids at the binding site demonstrates the potential for the rational design of drugs which function specifically at genetically engineered receptors.  相似文献   

3.
The production of alkaline protease of Aspergillus oryzae U1521 was examined in liquid culture. In a culture of defatted soybean only, it gave satisfactory enzyme yields at 584,000 U/g defatted soybean. When various carbohydrates were supplemented, enzyme production was significantly increased. An increase in production by lactose was the most marked. Enrichment with casitone or casein increased productivity, but not cornsteep solid. Media formulation (g/L) of defatted soybean 10, lactose 5, casitone 1, and KH(2)PO(4) 5 enhanced alkaline protease production by A. oryzae U1521 to a maximum of 1,410,000 U/g defatted soybean. Scaling-up experiments indicated the flask-scale results could be reproduced at 40 g of substrate in 5-L fermenter. The enzyme activity was maximum between pH 8-9 and at a temperature of 45 degrees C.  相似文献   

4.
The release of genetically engineered microorganisms (GEMs) into the environment has, as its main aims, the benefits of improved agricultural yield and control of environmental pollution. However, effective and safe release programmes necessitate the development of sensitive, selective detection methods to monitor the environmental impact of released organisms.  相似文献   

5.
Most genetically engineered organisms are unlikely to pose any threat to the environment because they are already highly selected for survival under restricted conditions. Engineering for new traits in natural or semi-natural populations, however, may entail greater risks. Genetic novelty, i.e. mutation, is an important component of the evolutionary process; a small but significant proportion of natural mutations lead to improved fitness and increased competitiveness. The artificial insertion of a new trait may produce a similar effect, setting an organism on a new and unpredictable evolutionary track. The current challenge is to attain the capacity to identify the small proportion of genetically engineered organisms in which such events might occur.  相似文献   

6.
7.
8.
9.
A method has been devised for directly detecting and monitoring genetically engineered microorganisms (GEMs) by using in vitro amplification of the target DNAs by a polymerase chain reaction and then hybridizing the DNAs with a specific oligonucleotide or DNA probe. A cloned 0.3-kilobase napier grass (Pennisetum purpureum) genomic DNA that did not hybridize to DNAs isolated from various microorganisms, soil sediments, and aquatic environments was inserted into a derivative of a 2,4-dichlorophenoxyacetic acid-degradative plasmid, pRC10, and transferred into Escherichia coli. This genetically altered microorganism, seeded into filter-sterilized lake and sewage water samples (10(4)/ml), was detected by a plate count method in decreasing numbers for 6 and 10 days of sample incubation, respectively. The new method detected the amplified unique marker (0.3-kilobase DNA) of the GEM even after 10 to 14 days of incubation. This method is highly sensitive (it requires only picogram amounts of DNA) and has an advantage over the plate count technique, which can detect only culturable microorganisms. The method may be useful for monitoring GEMs in complex environments, where discrimination between GEMs and indigenous microorganisms is either difficult or requires time-consuming tests.  相似文献   

10.
11.
12.
13.
14.
Sensitivity of genetically engineered organisms to selective media.   总被引:2,自引:0,他引:2       下载免费PDF全文
Eighteen strains of Escherichia coli used in genetic studies were tested for their ability to grow on several selective media. Highest recoveries were obtained with m-T7 agar. The SOS system, particularly the recA gene, may play some role in the sensitivity of E. coli to selective agents. These results may be important in the selection of media used to detect genetically engineered organisms released into the environment.  相似文献   

15.
16.
Field testing of genetically engineered microorganisms   总被引:5,自引:0,他引:5  
The first approved field releases of microorganisms genetically altered in the laboratory have been initiated in the past several years. While most introductions have been carried out in the United States, several tests have also occurred in the United Kingdom and Australia. Although such releases remain controversial in some areas, these pioneering studies have provided significant insight into the environmental behavior and relative safety of applying these microbes in a well-planned and carefully monitored program.  相似文献   

17.
Most microorganisms do not produce sialic acid (sialate), and those that do appear to use a biosynthetic mechanism distinct from mammals. Genetic hybrids of nonpathogenic, sialate-negative laboratory Escherichia coli K-12 strains designed for the de novo synthesis of the polysialic acid capsule from E. coli K1 proved useful in elucidating the genetics and biochemistry of capsule biosynthesis. In this article we propose a dynamic model of sialometabolism to investigate the effects of biosynthetic neu (N-acetylneuraminic acid) and catabolic nan (N-acylneuraminate) mutations on the flux of intermediates through the sialate synthetic pathway. Intracellular sialate concentrations were determined by high pH anion exchange chromatography with pulsed amperometric detection. The results indicated that a strain carrying a null defect in the gene encoding polysialyltransferase (neuS) accumulated > 50 times more CMP-sialic acid than the wild type when strains were grown in a minimal medium supplemented with glucose and casamino acids. Metabolic accumulation of CMP-sialic acid depended on a functional sialic acid synthase (neuB), as shown by the inability of a strain lacking this enzyme to accumulate a detectable endogenous sialate pool. The neuB mutant concentrated trace sialate from the medium, indicating its potential value for quantitative analysis of free sialic acids in complex biological samples. The function of the sialate aldolase (encoded by nanA) in limiting intermediate flux through the synthetic pathway was determined by analyzing free sialate accumulation in neuA (CMP-sialic acid synthetase) nanA double mutants. The combined results demonstrate how E. coli avoids a futile cycle in which biosynthetic sialate induces the system for its own degradation and indicate the feasibility of generating sialooligosaccharide precursors through targeted manipulation of sialate metabolism.  相似文献   

18.
This review considers the reasons for, and research governing, the regulation and monitoring of genetically engineered micro-organisms and viruses (GEMs) released into the environment. The hazards associated with releasing GEMs into the environment are the creation and evolution of new pests and diseases, and damage to the ecosystem and non target species. The similarities and differences between GEMs and conventional micro-organisms are discussed in relation to risk assessment. Other issues covered include the persistence of micro-organisms in the environment, transgene dispersal to non-engineered microbes and other organisms, the effects of transgenes and transformation on fitness, and the evolution of pests and pathogens that are given or acquire transgenes. Areas requiring further research are identified and recommendations for risk assessment made.  相似文献   

19.

Background  

Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP) variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution.  相似文献   

20.
This article considers the question of a priori assessment of the safety of releasing recombinant DNA engineered organisms. Now and for the foreseeable future, decisions to release such an organism must be based on the results of limited, case-by-case risk assessment studies. The criteria calling for the termination of release programs must be agreed upon in advance of these studies. There is no justification for excluding classes of release organisms from risk assessment. Theory is useful in suggesting a hierarchy of risks, raising the questions that have to be addressed in case-by-case risk assessment and providing protocols for the standardization and execution of these studies. We do not believe that theory can be used to argue categorically for or against the safety of specific releases of recombinant DNA engineered organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号