首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

We have showed that secretory Apolipoprotein J/Clusterin (sCLU) is down-regulated in senescent, stressed or diseased red blood cells (RBCs). It was hypothesized that sCLU loss relates to RBCs vesiculation, a mechanism that removes erythrocyte membrane patches containing defective or potentially harmful components.

Methodology/Principal Findings

To investigate this issue we employed a combination of biochemical and microscopical approaches in freshly prepared RBCs or RBCs stored under standard blood bank conditions, an in vitro model system of cellular aging. We found that sCLU is effectively exocytosed in vivo during membrane vesiculation of freshly prepared RBCs. In support, the RBCs'' sCLU content was progressively reduced during RBCs ex vivo maturation and senescence under cold storage due to its selective exocytosis in membrane vesicles. A range of typical vesicular components, also involved in RBCs senescence, like Band 3, CD59, hemoglobin and carbonylated membrane proteins were found to physically interact with sCLU.

Conclusions/Significance

The maturation of RBCs is associated with a progressive loss of sCLU. We propose that sCLU is functionally involved in the disposal of oxidized/defected material through RBCs vesiculation. This process most probably takes place through sCLU interaction with RBCs membrane proteins that are implicit vesicular components. Therefore, sCLU represents a pro-survival factor acting for the postponement of the untimely clearance of RBCs.  相似文献   

2.

Background

Mutations that disrupt the conversion of prelamin A to mature lamin A cause the rare genetic disorder Hutchinson-Gilford progeria syndrome and a group of laminopathies. Our understanding of how A-type lamins function in vivo during early vertebrate development through aging remains limited, and would benefit from a suitable experimental model. The zebrafish has proven to be a tractable model organism for studying both development and aging at the molecular genetic level. Zebrafish show an array of senescence symptoms resembling those in humans, which can be targeted to specific aging pathways conserved in vertebrates. However, no zebrafish models bearing human premature senescence currently exist.

Principal Findings

We describe the induction of embryonic senescence and laminopathies in zebrafish harboring disturbed expressions of the lamin A gene (LMNA). Impairments in these fish arise in the skin, muscle and adipose tissue, and sometimes in the cartilage. Reduced function of lamin A/C by translational blocking of the LMNA gene induced apoptosis, cell-cycle arrest, and craniofacial abnormalities/cartilage defects. By contrast, induced cryptic splicing of LMNA, which generates the deletion of 8 amino acid residues lamin A (zlamin A-Δ8), showed embryonic senescence and S-phase accumulation/arrest. Interestingly, the abnormal muscle and lipodystrophic phenotypes were common in both cases. Hence, both decrease-of-function of lamin A/C and gain-of-function of aberrant lamin A protein induced laminopathies that are associated with mesenchymal cell lineages during zebrafish early development. Visualization of individual cells expressing zebrafish progerin (zProgerin/zlamin A-Δ37) fused to green fluorescent protein further revealed misshapen nuclear membrane. A farnesyltransferase inhibitor reduced these nuclear abnormalities and significantly prevented embryonic senescence and muscle fiber damage induced by zProgerin. Importantly, the adult Progerin fish survived and remained fertile with relatively mild phenotypes only, but had shortened lifespan with obvious distortion of body shape.

Conclusion

We generated new zebrafish models for a human premature aging disorder, and further demonstrated the utility for studying laminopathies. Premature aging could also be modeled in zebrafish embryos. This genetic model may thus provide a new platform for future drug screening as well as genetic analyses aimed at identifying modifier genes that influence not only progeria and laminopathies but also other age-associated human diseases common in vertebrates.  相似文献   

3.

Background

Cellular senescence may be a key factor in HIV-related premature biological aging. We assessed features of the corneal endothelium that are known to be associated with biological aging, and cellular senescence markers in HIV-infected adults.

Methods

Case-control study of 242 HIV-infected adults and 249 matched controls. Using specular microscopy, the corneal endothelium was assessed for features of aging (low endothelial cell density [ECD], high variation in cell size, and low hexagonality index). Data were analysed by multivariable regression. CDKN2A expression (a cell senescence mediator) was measured in peripheral blood leukocytes and 8-hydroxy-2′-deoxyguanosine (8-OHDG; an oxidative DNA damage marker) levels were measured in plasma.

Results

The median age of both groups was 40 years. Among HIV-infected adults, 88% were receiving antiretroviral therapy (ART); their median CD4 count was 468 cells/µL. HIV infection was associated with increased odds of variation in cell size (OR = 1.67; 95% CI: 1.00–2.78, p = 0.04). Among HIV-infected participants, low ECD was independently associated with current CD4 count <200 cells/µL (OR = 2.77; 95%CI: 1.12–6.81, p = 0.03). In participants on ART with undetectable viral load, CDKN2A expression and 8-OHDG levels were higher in those with accelerated aging, as reflected by lower ECD.

Conclusions

The corneal endothelium shows features consistent with HIV-related accelerated senescence, especially among those with poor immune recovery.  相似文献   

4.

Introduction

Dexamethasone (DEX) co-treatment has proved beneficial in NSCLC patients, improving clinical symptoms by the reduction of side effects after chemotherapy. However, recent studies have shown that DEX could render cancer cells more insensitive to cytotoxic drug therapy, but it is not known whether DEX co-treatment could influence therapy-induced senescence (TIS), and unknown whether it is in a p53-dependent or p53-independent manner.

Methods

We examined in different human NSCLC cell lines and detected cellular senescence after cisplatin (DDP) treatment in the presence or absence of DEX. The in vivo effect of the combination of DEX and DDP was assessed by tumor growth experiments using human lung cancer cell lines growing as xenograft tumors in nude mice.

Results

Co-treatment with DEX during chemotherapy in NSCLC resulted in increased tumor cell viability and inhibition of TIS compared with DDP treated group. DEX co-treatment cells exhibited the decrease of DNA damage signaling pathway proteins, the lower expression of p53 and p21CIP1, the lower cellular secretory program and down-regulation of NF-κB and its signaling cascade. DEX also significantly reduced DDP sensitivity in vivo.

Conclusions

Our results underscore that DEX reduces chemotherapy sensitivity by blunting therapy induced cellular senescence after chemotherapy in NSCLC, which may, at least in part, in a p53-dependent manner. These data therefore raise concerns about the widespread combined use of gluocorticoids (GCs) with antineoplastic drugs in the clinical management of cancer patients.  相似文献   

5.

Background

Airway remodeling is a repair process that occurs after injury resulting in increased airway hyper-responsiveness in asthma. Thymic stromal lymphopoietin (TSLP), a vital cytokine, plays a critical role in orchestrating, perpetuating and amplifying the inflammatory response in asthma. TSLP is also a critical factor in airway remodeling in asthma.

Objectives

To examine the role of TSLP-induced cellular senescence in airway remodeling of asthma in vitro and in vivo.

Methods

Cellular senescence and airway remodeling were examined in lung specimens from patients with asthma using immunohischemical analysis. Both small molecule and shRNA approaches that target the senescent signaling pathways were used to explore the role of cellular senescence in TSLP-induced airway remodeling in vitro. Senescence-Associated β-galactosidase (SA-β-Gal) staining, and BrdU assays were used to detect cellular senescence. In addition, the Stat3-targeted inhibitor, WP1066, was evaluated in an asthma mouse model to determine if inhibiting cellular senescence influences airway remodeling in asthma.

Results

Activation of cellular senescence as evidenced by checkpoint activation and cell cycle arrest was detected in airway epithelia samples from patients with asthma. Furthermore, TSLP-induced cellular senescence was required for airway remodeling in vitro. In addition, a mouse asthma model indicates that inhibiting cellular senescence blocks airway remodeling and relieves airway resistance.

Conclusion

TSLP stimulation can induce cellular senescence during airway remodeling in asthma. Inhibiting the signaling pathways of cellular senescence overcomes TSLP-induced airway remodeling.  相似文献   

6.

Background

In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF) and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs). A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.

Methods and Findings

We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB) RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs), monocytes, and nonparasitized RBCs – cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite''s cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1) on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs.

Conclusions

Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant''s contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood.  相似文献   

7.

Background

While copper has essential functions as an enzymatic co-factor, excess copper ions are toxic for cells, necessitating mechanisms for regulating its levels. The cusCBFA operon of E. coli encodes a four-component efflux pump dedicated to the extrusion of Cu(I) and Ag(I) ions.

Methodology/Principal Findings

We have solved the X-ray crystal structure of CusC, the outer membrane component of the Cus heavy metal efflux pump, to 2.3 Å resolution. The structure has the largest extracellular opening of any outer membrane factor (OMF) protein and suggests, for the first time, the presence of a tri-acylated N-terminal lipid anchor.

Conclusions/Significance

The CusC protein does not have any obvious features that would make it specific for metal ions, suggesting that the narrow substrate specificity of the pump is provided by other components of the pump, most likely by the inner membrane component CusA.  相似文献   

8.

Objectives

We aimed to investigate the protective effect of Lycium barbarum polysaccharides (LBPs) against oxidative stress–induced apoptosis and senescence in human lens epithelial cells.

Methods

To study apoptosis, SRA01/04 cells, a human lens epithelial cell lines, were exposed to 200 µM hydrogen peroxide (H2O2) for 24 h with or without pretreatment with LBPs. Cell viability was measured using a Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis, intracellular reactive oxygen species (ROS), and the loss of mitochondria membrane potential (Δψm) were detected by flow cytometric analyses. Expression levels of Bcl-2 and Bax proteins were measured by western blot analysis. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were quantized using commercial enzymatic kits according to the manufacturer''s instructions. To study senescence, SRA01/04 cells were pre-incubated with LBPs and all cells were then exposed to 100 µM H2O2 for 96 h. Cellular senescence was assessed by morphologic examination and senescence-associated β-galactosidase (SA-β-gal) staining.

Results

LBPs significantly reduced H2O2-induced cell apoptosis, the generation of ROS, the loss of Δψm, and the levels of MDA. LBPs also inhibited H2O2-induced downregulated Bcl-2 and upregulated Bax proteins and increased the levels of SOD and GSH enzyme activity. Moreover, LBPs significantly attenuated H2O2-induced cellular senescence.

Conclusions

These findings suggested that LBPs protect human lens epithelial cells from H2O2-induced apoptosis by modulating the generation of ROS, loss of Δψm, Bcl-2 family, and antioxidant enzyme activity and attenuating cellular senescence.  相似文献   

9.

Background

Normal and pathological processes entail the production of oxidative substances that can damage biological molecules and harm physiological functions. Organisms have evolved complex mechanisms of antioxidant defense, and any imbalance between oxidative challenge and antioxidant protection can depress fitness components and accelerate senescence. While the role of oxidative stress in pathogenesis and aging has been studied intensively in humans and model animal species under laboratory conditions, there is a dearth of knowledge on its role in shaping life-histories of animals under natural selection regimes. Yet, given the pervasive nature and likely fitness consequences of oxidative damage, it can be expected that the need to secure efficient antioxidant protection is powerful in molding the evolutionary ecology of animals. Here, we test whether overall antioxidant defense varies with age and predicts long-term survival, using a wild population of a migratory passerine bird, the barn swallow (Hirundo rustica), as a model.

Methodology/Principal Findings

Plasma antioxidant capacity (AOC) of breeding individuals was measured using standard protocols and annual survival was monitored over five years (2006–2010) on a large sample of selection episodes. AOC did not covary with age in longitudinal analyses after discounting the effect of selection. AOC positively predicted annual survival independently of sex. Individuals were highly consistent in their relative levels of AOC, implying the existence of additive genetic variance and/or environmental (including early maternal) components consistently acting through their lives.

Conclusions

Using longitudinal data we showed that high levels of antioxidant protection positively predict long-term survival in a wild animal population. Present results are therefore novel in disclosing a role for antioxidant protection in determining survival under natural conditions, strongly demanding for more longitudinal eco-physiological studies of life-histories in relation to oxidative stress in wild populations.  相似文献   

10.

Background

Cellular senescence can be a functional barrier to carcinogenesis. We hypothesized that inflammation modulates carcinogenesis through senescence and DNA damage response (DDR). We examined the association between senescence and DDR with macrophage levels in inflammatory bowel disease (IBD). In vitro experiments tested the ability of macrophages to induce senescence in primary cells. Inflammation modulating microRNAs were identified in senescence colon tissue for further investigation.

Methodology/Principal Findings

Quantitative immunohistochemistry identified protein expression by colon cell type. Increased cellular senescence (HP1γ; P = 0.01) or DDR (γH2A.X; P = 0.031, phospho-Chk2, P = 0.014) was associated with high macrophage infiltration in UC. Co-culture with macrophages (ANA-1) induced senescence in >80% of primary cells (fibroblasts MRC5, WI38), illustrating that macrophages induce senescence. Interestingly, macrophage-induced senescence was partly dependent on nitric oxide synthase, and clinically relevant NO• levels alone induced senescence. NO• induced DDR in vitro, as detected by immunofluorescence. In contrast to UC, we noted in Crohn’s disease (CD) that senescence (HP1γ; P<0.001) and DDR (γH2A.X; P<0.05, phospho-Chk2; P<0.001) were higher, and macrophages were not associated with senescence. We hypothesize that nitric oxide may modulate senescence in CD; epithelial cells of CD had higher levels of NOS2 expression than in UC (P = 0.001). Microarrays and quantitative-PCR identified miR-21 expression associated with macrophage infiltration and NOS2 expression.

Conclusions

Senescence was observed in IBD with senescence-associated β-galactosidase and HP1γ. Macrophages were associated with senescence and DDR in UC, and in vitro experiments with primary human cells showed that macrophages induce senescence, partly through NO•, and that NO• can induce DDR associated with senescence. Future experiments will investigate the role of NO• and miR-21 in senescence. This is the first study to implicate macrophages and nitrosative stress in a direct effect on senescence and DDR, which is relevant to many diseases of inflammation, cancer, and aging.  相似文献   

11.

Background and Aims

Nitrogen (N) availability in the forest soil is extremely low and N economy has a special importance in woody plants that are able to cope with seasonal periods of growth and development over many years. Here we report on the analysis of amino acid pools and expression of key genes in the perennial species Populus trichocarpa during autumn senescence.

Methods

Amino acid pools were measured throughout senescence. Expression analysis of arginine synthesis genes and cationic amino acid transporter (CAT) genes during senescence was performed. Heterologous expression in yeast mutants was performed to study Pt-CAT11 function in detail.

Key Results

Analysis of amino acid pools showed an increase of glutamine in leaves and an accumulation of arginine in stems during senescence. Expression of arginine biosynthesis genes suggests that arginine was preferentially synthesized from glutamine in perennial tissues. Pt-CAT11 expression increased in senescing leaves and functional characterization demonstrated that Pt-CAT11 transports glutamine.

Conclusions

The present study established a relationship between glutamine synthesized in leaves and arginine synthesized in stems during senescence, arginine being accumulated as an N storage compound in perennial tissues such as stems. In this context, Pt-CAT11 may have a key role in N remobilization during senescence in poplar, by facilitating glutamine loading into phloem vessels.  相似文献   

12.

Introduction

Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging.

Methods

SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750. Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes.

Results

C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines.

Conclusions

Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750, although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of age-related retinal diseases.  相似文献   

13.

Background

The H3K4 demethylase retinoblastoma binding protein 2 (RBP2) is involved in the pathogenesis of gastric cancer, but its role and regulation in hepatocellular carcinoma (HCC) is unknown. We determined the function of RBP2 and its regulation in HCC in vitro and in human tissues.

Methods

We analyzed gene expression in 20 specimens each of human HCC and normal liver tissue by quantitative real-time PCR and immunohistochemistry. Proliferation was analyzed by foci formation and senescence by β-galactosidase staining. Promoter activity was detected by luciferase reporter assay.

Results

The expression of RBP2 was stronger in cancerous than non-cancerous tissues, but that of its binding microRNA, Homo sapiens miR-212 (hsa-miR-212), showed an opposite pattern. SiRNA knockdown of RBP2 significantly upregulated cyclin-dependent kinase inhibitors (CDKIs), with suppression of HCC cell proliferation and induction of senescence. Overexpression of hsa-miR-212 suppressed RBP2 expression, with inhibited cell proliferation and induced cellular senescence, which coincided with upregulated CDKIs; with low hsa-miR-212 expression, CDKIs were downregulated in HCC tissue. Inhibition of hsa-miR-212 expression upregulated RBP2 expression. Luciferase reporter assay detected the direct binding of hsa-miR-212 to the RBP2 3′ UTR.

Conclusions

RBP2 is overexpressed in HCC and negatively regulated by hsa-miR-212. The hsa-miR-212–RBP2–CDKI pathway may be important in the pathogenesis of HCC.  相似文献   

14.
15.

Background

Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria.

Methodology/Principal Findings

We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells.

Conclusion/Significance

Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.  相似文献   

16.

Background

Expression of the tumor suppressor p16INK4a increases during aging and replicative senescence.

Methodology/Principal Findings

Here, we report that the microRNA miR-24 suppresses p16 expression in human diploid fibroblasts and cervical carcinoma cells. Increased p16 expression with replicative senescence was associated with decreased levels of miR-24, a microRNA that was predicted to associate with the p16 mRNA coding and 3′-untranslated regions. Ectopic miR-24 overexpression reduced p16 protein but not p16 mRNA levels. Conversely, introduction of antisense (AS)-miR-24 blocked miR-24 expression and markedly enhanced p16 protein levels, p16 translation, and the production of EGFP-p16 reporter bearing the miR-24 target recognition sites.

Conclusions/Significance

Together, our results suggest that miR-24 represses the initiation and elongation phases of p16 translation.  相似文献   

17.

Background

Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism.

Methodology/Principal Findings

We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection.

Conclusion

We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.  相似文献   

18.

Background

Reduced cell spreading is a prominent feature of aged dermal fibroblasts in human skin in vivo. Mitochondrial DNA (mtDNA) common deletion has been reported to play a role in the human aging process, however the relationship between age-related reduced cell spreading and mtDNA common deletion has not yet been reported.

Results

To examine mtDNA common deletion in the dermis of aged human skin, the epidermis was removed from full-thickness human skin samples using cryostat. mtDNA common deletion was significantly elevated in the dermis of both naturally aged and photoaged human skin in vivo. To examine the relationship between age-related reduced cell spreading and mtDNA common deletion, we modulated the shape of dermal fibroblasts by disrupting the actin cytoskeleton. Reduced cell spreading was associated with a higher level of mtDNA common deletion and was also accompanied by elevated levels of endogenous reactive oxygen species (ROS). Boosting cellular antioxidant capacity by using antioxidants was found to be protective against mtDNA common deletion associated with reduced cell spreading.

Conclusion

mtDNA common deletion is highly prevalent in the dermis of both naturally aged and photoaged human skin in vivo. mtDNA common deletion in response to reduced cell spreading is mediated, at least in part, by elevated oxidative stress in human dermal fibroblasts. These data extend current understanding of the mitochondrial theory of aging by identifying the connection between mtDNA common deletion and age-related reduction of cell spreading.  相似文献   

19.

Introduction

Telomere shortening is a cell-intrinsic mechanism that limits cell proliferation by induction of DNA damage responses resulting either in apoptosis or cellular senescence. Shortening of telomeres has been shown to occur during human aging and in chronic diseases that accelerate cell turnover, such as chronic hepatitis. Telomere shortening can limit organ homeostasis and regeneration in response to injury. Whether the same holds true for pancreas regeneration in response to injury is not known.

Methods

In the present study, pancreatic regeneration after acute cerulein-induced pancreatitis was studied in late generation telomerase knockout mice with short telomeres compared to telomerase wild-type mice with long telomeres.

Results

Late generation telomerase knockout mice exhibited impaired exocrine pancreatic regeneration after acute pancreatitis as seen by persistence of metaplastic acinar cells and markedly reduced proliferation. The expression levels of p53 and p21 were not significantly increased in regenerating pancreas of late generation telomerase knockout mice compared to wild-type mice.

Conclusion

Our results indicate that pancreatic regeneration is limited in the context of telomere dysfunction without evidence for p53 checkpoint activation.  相似文献   

20.

Background and Aims

Leaf longevity is an important plant functional trait that often varies with soil nitrogen supply. Ethylene is a classical plant hormone involved in the control of senescence and abscission, but its role in nitrogen-dependent leaf longevity is largely unknown.

Methods

Pot and field experiments were performed to examine the effects of nitrogen addition on leaf longevity and ethylene production in two dominant plant species, Agropyron cristatum and Stipa krylovii, in a temperate steppe in northern China.

Key Results

Nitrogen addition increased leaf ethylene production and nitrogen concentration but shortened leaf longevity; the addition of cobalt chloride, an ethylene biosynthesis inhibitor, reduced leaf nitrogen concentration and increased leaf longevity. Path analysis indicated that nitrogen addition reduced leaf longevity mainly through altering leaf ethylene production.

Conclusions

These findings provide the first experimental evidence in support of the involvement of ethylene in nitrogen-induced decrease in leaf longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号