首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DB921 and DB911 are benzimidazole-biphenyl isomers with terminal charged amidines. DB911 has a central meta-substituted phenyl that gives it a shape similar to those of known minor groove binding compounds. DB921 has a central para-substituted phenyl with a linear conformation that lacks the appropriate radius of curvature to match the groove shape. It is thus expected that DB911, but not DB921, should be an effective minor groove binder, but we find that DB921 not only binds in the groove but also has an unusually high binding constant in SPR experiments (2.9 x 10(8) M(-)(1), vs 2.1 x 10(7) M(-)(1) for DB911). ITC thermodynamic analysis with an AATT sequence shows that the stronger binding of DB921 is due to a more favorable binding enthalpy relative to that of DB911. CD results support minor groove binding for both compounds but do not provide an explanation for the binding of DB921. X-ray crystallographic analysis of DB921 bound to AATT shows that an induced fit structural change in DB921 reduces the twist of the biphenyl to complement the groove, and places the functional groups in position to interact with bases at the floor of the groove. The phenylamidine of DB921 forms indirect contacts with the bases through a bound water. The DB921-water pair forms a curved binding module that matches the shape of the minor groove and provides a number of strong interactions that are not possible with DB911. This result suggests that traditional views of compound curvature required for minor groove complex formation should be reevaluated.  相似文献   

2.
New insight into the molecular mechanisms of two-partner secretion   总被引:1,自引:1,他引:0  
Two-partner secretion (TPS) systems, which export large proteins to the surface and/or extracellular milieu of Gram-negative bacteria, are members of a large superfamily of protein translocation systems that are widely distributed in animals, plants and fungi, in addition to nearly all groups of Gram-negative bacteria. Recent intense research on TPS systems has provided new insight into the structure and topology of the outer membrane translocator proteins and the large exoproteins that they secrete, the interactions between them, and mechanisms for retention of some of the secreted proteins on the bacterial surface. Evidence for secretion-dependent folding of mature exoproteins has also been obtained. Together, these findings provide a deeper understanding of the molecular mechanisms underlying these simple but elegant secretion systems.  相似文献   

3.
We have used metadynamics to investigate the mechanism of noncovalent dissociation from DNA by two representatives of alkylating and noncovalent minor groove (MG) binders. The compounds are anthramycin in its anhydrous form (IMI) and distamycin A (DST), which differ in mode of binding, size, flexibility and net charge. This choice enables to evaluate the influence of such factors on the mechanism of dissociation. Dissociation of IMI requires an activation free energy of approximately 12 kcal/mol and occurs via local widening of the MG and loss of contacts between the drug and one DNA strand, along with the insertion of waters in between. The detachment of DST occurs at a larger free energy cost, approximately 16.5 or approximately 18 kcal/mol depending on the binding mode. These values compare well with that of 16.6 kcal/mol extracted from stopped-flow experiments. In contrast to IMI, an intermediate is found in which the ligand is anchored to the DNA through its amidinium tail. From this conformation, binding and unbinding occur almost at the same rate. Comparison between DST and with kinetic models for the dissociation of Hoechst 33258 from DNA uncovers common characteristics across different classes of noncovalent MG ligands.  相似文献   

4.
Topoisomerase inhibition is an extremely useful target for anticancer and antimicrobial drugs, and an undesirable side effect of some drugs targeting other proteins. Published modelling studies are sparse, and have used small data sets with relatively low molecular diversity. Given the important role of minor groove binding in the mechanism of topoisomerase I inhibition, we have conducted the first 3D QSAR study of topoisomerase I inhibition of a large, diverse set of minor groove binders using the minor groove binding conformation as the alignment template. The highly significant QSAR models resulting from this alignment identify the roles played by molecular features, most importantly the hydrogen bond donor properties.  相似文献   

5.
Optical methods, such as fluorescence, circular dichroism and linear flow dichroism, were used to study the binding to DNA of four symmetrical cyanine dyes, each consisting of two identical quinoline, benzthiazole, indole, or benzoxazole fragments connected by a trimethine bridge. The ligands were shown to form a monomer type complex into the DNA minor groove. The complex of quinoline-containing ligand with calf thymus DNA appeared to be the most resistant to ionic strength, and it did not dissociate completely even in 1 M NaCl. Binding of cyanine dyes to DNA could also be characterized by possibility to form ligand dimers into the DNA minor groove, by slight preference of binding to AT pairs, as well as by possible intercalation between base pairs of poly(dG)-poly(dC). The correlation found between the binding constants to DNA and the extent of cyanine dyes hydrophobicity estimated as the n-octanol/water partition coefficient is indicative of a significant role of hydrophobic interactions for the ligand binding into the DNA minor groove.  相似文献   

6.
2,5-Bis-[4-(N-cyclobutyl-amidino)phenyl] furan and 2,5-bis-[4-(N-cyclohexyl-amidino)phenyl] furan have activity against Pneumocystis carinii and also show cytotoxicity against several tumour cell lines. These activities are correlated with DNA-binding abilities; the crystal structures of complexes with the DNA sequence d(CGCGAATTCGCG) is reported here. Interactions with, and effects on, the DNA minor groove, are found to be factors in the biological properties of these compounds.  相似文献   

7.
Stephen Neidle 《Biopolymers》1997,44(1):105-121
This review surveys the crystal structures between minor groove drugs and oligonucleotides, of which over thirty have now been determined. The various factors that are involved in the observed A/T sequence selectivity of these drugs are examined in structural terms. The roles of, in particular, hydrogen-bond recognition and sequence-dependent groove width, are assessed, and as a consequence the minor groove drugs have been classified into two categories, dependent on the relative roles played by these two factors in sequence recognition. Implications for the recognition of non-A/T sequences are discussed. © 1997 John Wiley & Sons, Inc. Biopoly 44: 105–121, 1997  相似文献   

8.
New conjugates containing two parallel or antiparallel carboxamide minor groove binders (MGB) attached to the same terminal phosphate of one oligonucleotide strand were synthesized. The conjugates interact with their target DNA stronger than the individual components. Effect of conjugated MGB on DNA duplex and triplex stability and their sequence specificity was demonstrated on the short oligonucleotide duplexes and on the triplex formed by model 16-mer oligonucleotide with HIV polypurine tract.  相似文献   

9.
We present titrations of the human δβ-globin gene region with DNA minor groove binders netropsin, bisnetropsin, distamycin, chromomycin and four bis-quaternary ammonium compounds in the presence of calf thymus topoisomerase II and DNase I. With increasing ligand concentration, stimulation and inhibition of enzyme activity were detected and quantitatively evaluated. Additionally we show a second type of stimulation, the appearance of strong new topoisomerase II cleavage sites at high ligand concentrations. The specific binding sites of the minor groove binders of the DNA sequence and their microscopic binding constants were determined from DNase I footprints. A binding mechanism for minor groove binders is proposed in order to explain these results especially when ligand concentration is increased. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
The recognition of DNA by small molecules is of special importance in the design of new drugs. Many natural and synthetic compounds have the ability to interact with the minor groove of DNA. In the present study, identification of minor groove binding compounds was attained by the combined approach of pharmacophore modelling, virtual screening and molecular dynamics approach. Experimentally reported 32 minor groove binding compounds were used to develop the pharmacophore model. Based on the fitness score, best three pharmacophore hypotheses were selected and used as template for screening the compounds from drug bank database. This pharmacophore‐based screening provides many compounds with the same pharmacological properties. All these compounds were subjected to four phases of docking protocols with combined Glide‐quantum‐polarized ligand docking approach. Molecular dynamics results indicated that selected compounds are more active and showed good interaction in the binding site of DNA. Based on the scoring parameters and energy values, the best compounds were selected, and antibacterial activity of these compounds was identified using in vitro antimicrobial techniques. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The DNA minor groove binders SN6999, SN6570, and SN6113, structurally related to netropsin and distamycin, were investigated for sequence-specific interactions with the 154 base pair cDNA fragment of the human tau 40 protein, involved in pathology of Alzheimer's disease. Footprinting results indicated that both the former compounds displayed a pronounced AT-preference, while the latter SN-derivative bound to DNA in a non-sequence specific manner. The influence of these ligands on the protein synthesis was analysed using monoclonal antibodies against h tau protein. Both sequence specific binders markedly impeded protein synthesis. The non-specific binder, however, did not affect protein biosynthesis.  相似文献   

12.
The effects of compounds which bind in the DNA minor groove of A.T rich sequences, on bleomycin-catalyzed site-specific DNA cleavage were investigated by a DNA sequencing technique. Distamycin A enhanced bleomycin-catalyzed DNA cleavage in G.C rich sequences such as 5'-GGGGC-3' (under scoring; the cleaved nucleotide). The cleavage in such a sequence in the presence of distamycin A was greater than that in the absence of distamycin A by as much as about 100 times. Neither Hoechst 33258, 4',6-diamidino-2-phenylindole (DAPI) nor berenil caused extensive enhancement. The results suggest that the distamycin-induced conformational changes of DNA through interactions other than the DNA minor groove binding in A.T-rich sequences are specifically suitable for the bleomycin action.  相似文献   

13.
14.
Kwon Y  Xi Z  Kappen LS  Goldberg IH  Gao X 《Biochemistry》2003,42(5):1186-1198
Neocarzinostatin (NCS-chrom), a natural enediyne antitumor antibiotic, undergoes either thiol-dependent or thiol-independent activation, resulting in distinctly different DNA cleavage patterns. Structures of two different post-activated NCS-chrom complexes with DNA have been reported, revealing strikingly different binding modes that can be directly related to the specificity of DNA chain cleavage caused by NCS-chrom. The third structure described herein is based on recent studies demonstrating that glutathione (GSH) activated NCS-chrom efficiently cleaves DNA at specific single-base sites in sequences containing a putative single-base bulge. In this structure, the GSH post-activated NCS-chrom (NCSi-glu) binds to a decamer DNA, d(GCCAGAGAGC), from the minor groove. This binding triggers a conformational switch in DNA from a loose duplex in the free form to a single-strand, tightly folded hairpin containing a bulge adenosine embedded between a three base pair stem. The naphthoate aromatic moiety of NCSi-glu intercalates into a GG step flanked by the bulge site, and its substituent groups, the 2-N-methylfucosamine carbohydrate ring and the tetrahydroindacene, form a complementary minor groove binding surface, mostly interacting with the GCC strand in the duplex stem of DNA. The bulge site is stabilized by the interactions involving NCSi-glu naphthoate and GSH tripeptide. The positioning of NCSi-glu is such that only single-chain cleavage via hydrogen abstraction at the 5'-position of the third base C (which is opposite to the putative bulge base) in GCC is possible, explaining the observed single-base cleavage specificity. The reported structure of the NCSi-glu-bulge DNA complex reveals a third binding mode of the antibiotic and represents a new family of minor groove bulge DNA recognition structures. We predict analogue structures of NCSi-R (R = glu or other substituent groups) may be versatile probes for detecting the existence of various structures of nucleic acids. The NMR structure of this complex, in combination with the previously reported NCSi-gb-bulge DNA complex, offers models for specific recognition of DNA bulges of various sizes through binding to either the minor or the major groove and for single-chain cleavage of bulge DNA sequences.  相似文献   

15.
To determine what topological changes antiparasitic heterocyclic dications can have on kinetoplast DNA, we have constructed ligation ladders, with phased A5 and ATATA sequences in the same flanking sequence context, as models. Bending by the A5 tract is observed, as expected, while the ATATA sequence bends DNA very little. Complexes of these DNAs with three diamidines containing either furan, thiophene or selenophene groups flanked by phenylamidines were investigated along with netropsin. With the bent A5 ladder the compounds caused either a slight increase or decrease in the bending angle. Surprisingly, however, with ATATA all of the compounds caused significant bending, to values close to or even greater than the A5 bend angle. Results with a mixed cis sequence, which has one A5 and one ATATA, show that the compounds bend ATATA in the same direction as a reference A5 tract, that is, into the minor groove. These results are interpreted in terms of a groove structure for A5 which is largely pre-organized for a fit to the heterocyclic amidines. With ATATA the groove is intrinsically wider and must close to bind the compounds tightly. The conformational change at the binding site then leads to significant bending of the alternating DNA sequence.  相似文献   

16.
S Hanlon  L Wong    G R Pack 《Biophysical journal》1997,72(1):291-300
Poisson-Boltzmann calculations by Pack and co-workers suggest the presence of regions of increased hydrogen ion density in the grooves of DNA. As an experimental test of this prediction, we have attached proton-sensitive probes, with variable linker lengths, to random-sequence DNA at G sites in the minor groove. The amino groups of beta-alanine, gamma-aminobutyric acid (GABA), and epsilon-aminocaproic acid have been coupled at pH 5, via a formaldehyde link, to the exocyclic amino group of guanine, utilizing a reaction that has been extensively investigated by Hanlon and co-workers. The resulting adducts at pH 5 retained duplex B form but exhibited typical circular dichroism (CD) changes previously shown to be correlated with the presence of a net positive charge in the minor groove. Increases in the solvent pH reversed the CD spectral changes in a manner suggesting deprotonation of the carboxylic acid group of the adduct. These data were used to calculate an apparent pK(a) for the COOH. The pK(a) was increased by 2.4 units for beta-alanine, by 1.7 units for GABA, and by 1.5 units for epsilon-amino caproic acid, relative to their values in the free amino acid. This agrees well with Poisson-Boltzmann calculations and the energy minimization of the structures of the adducts that place the carboxyl groups in acidic domains whose hydrogen ion density is approximately 2 orders of magnitude greater than that of bulk solvent.  相似文献   

17.
18.
Bending by the DNA A-tracts constitutes a contentious issue, suggesting deficiencies in the physics employed so far. Here, we inquire as to the importance in this bending of many-body polarization effects on the electrostatic interactions across their narrow minor groove. We have done this on the basis of the findings of Jarque and Buckingham who developed a procedure based on a Monte Carlo simulation for two charges of the same sign embedded in a polarizable medium. Remarkably, the present analysis reveals that for compact DNA conformations, which result from dynamic effects, an overall attractive interaction operates between the phosphate charges; this interaction is especially strong for the narrow minor groove of the A-tracts, suggesting a tendency for DNA to bend toward this groove. This tendency is in agreement with the conclusions of electrophoretic and NMR solution studies. The present analysis is also consistent with the experimental observations that the minor groove is much more easily compressible than the major groove and the bending propensity of the A-tracts is greatly reduced at “premelting” temperatures. By contrast, the dielectric screening model predicts a repulsion between the phosphate charges and is not consistent with the aforementioned bending tendency or experimental observations.  相似文献   

19.
Protein and drug interactions in the minor groove of DNA   总被引:1,自引:1,他引:1       下载免费PDF全文
Interactions between proteins, drugs, water and B-DNA minor groove have been analyzed in crystal structures of 60 protein–DNA and 14 drug–DNA complexes. It was found that only purine N3, pyrimidine O2, guanine N2 and deoxyribose O4′ are involved in the interactions, and that contacts to N3 and O2 are most frequent and more polar than contacts to O4′. Many protein contacts are mediated by water, possibly to increase the DNA effective surface. Fewer water-mediated contacts are observed in drug complexes. The distributions of ligands around N3 are significantly more compact than around O2, and distributions of water molecules are the most compact. Distributions around O4′ are more diffuse than for the base atoms but most distributions still have just one binding site. Ligands bind to N3 and O2 atoms in analogous positions, and simultaneous binding to N3 and N2 in guanines is extremely rare. Contacts with two consecutive nucleotides are much more frequent than base–sugar contacts within one nucleotide. The probable reason for this is the large energy of deformation of hydrogen bonds for the one nucleotide motif. Contacts of Arg, the most frequent amino acid ligand, are stereochemically indistinguishable from the binding of the remaining amino acids except asparagine (Asn) and phenylalanine (Phe). Asn and Phe bind in distinct ways, mostly to a deformed DNA, as in the complexes of TATA-box binding proteins. DNA deformation concentrates on dinucleotide regions with a distinct deformation of the δ and backbone torsion angles for the Asn and δ, , ζ and χ for the Phe-contacted regions.  相似文献   

20.
The transport of the plant hormone auxin has been under intense investigation since its identification 80 years ago. Studies have gradually refined our understanding of the importance of auxin transport in many aspects of plant signalling and development, and the focus has intensified in recent years towards the identification of the proteins involved in auxin transport and their functional mechanism. Within the past 18 months, the field has progressed rapidly, with confirmation that several distinct classes of proteins, previously dubbed as 'putative auxin permeases' or 'auxin transport facilitators', are bona fide transporters of IAA (indol-3-ylacetic acid). In this review we will appraise the recent transport data and highlight likely future research directions, including the characterization of auxiliary proteins necessary for the regulation of auxin transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号