首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial catalase and oxidative injury   总被引:2,自引:0,他引:2  
Mitochondria dysfunction induced by reactive oxygen species (ROS) is related to many human diseases and aging. In physiological conditions, the mitochondrial respiratory chain is the major source of ROS. ROS could be reduced by intracellular antioxidant enzymes including superoxide dismutase, glutathione peroxidase and catalase as well as some antioxidant molecules like glutathione and vitamin E. However, in pathological conditions, these antioxidants are often unable to deal with the large amount of ROS produced. This inefficiency of antioxidants is even more serious in mitochondria, because mitochondria in most cells lack catalase. Therefore, the excessive production of hydrogen peroxide in mitochondria will damage lipid, proteins and mDNA, which can then cause cells to die of necrosis or apoptosis. In order to study the important role of mitochondrial catalase in protecting cells from oxidative injury, a HepG2 cell line overexpressing catalase in mitochondria was developed by stable transfection of a plasmid containing catalase cDNA linked with a mitochondria leader sequence which would encode a signal peptide to lead catalase into the mitochondria. Mitochondria catalase was shown to protect cells from oxidative injury induced by hydrogen peroxide and antimycin A. However, it increased the sensitivity of cells to tumor necrosis factor-alpha-induced apoptosis by changing the redox-oxidative status in the mitochondria. Therefore, the antioxidative effectiveness of catalase when expressed in the mitochondrial compartment is dependent upon the oxidant and the locus of ROS production.  相似文献   

2.
Whether viral pathogens that induce ER stress responses benefit the host or the virus remains controversial. In this study we show that betanodavirus induced ER stress responses up-regulate GRP78, which regulates the viral replication and host cellular mitochondrial-mediated cell death. Betanodavirus (redspotted grouper nervous necrosis virus, RGNNV) infection resulted in the following increased ER stress responses in fish GF-1 grouper fin cells: (1) IRE-1 and ATF-6 sensors at 48 h post-infection (p.i.) that up-regulated chaperone protein GRP78; (2) activation of caspase-12; and (3) PERK phosphorylation and down-regulation of Bcl-2. Analyses of GRP78 functions during viral replication using either loss-of-function or gain-of-function approaches showed that GRP78 over-expression also enhanced viral replication and induced cell death. Then, we found that zfGRP78 localization gradually increased in mitochondria after RGNNV infection by EGFP tagging approach. Furthermore, zfGRP78 can interact with viral RNA-dependent RNA polymerase (RdRp) by using immunofluorescent and immunoprecipitation assays. Finally, we found that blocking GRP78-mediated ER signals can reduce the viral death factors protein α and protein B2 expression and decrease the Bcl-2 down-regulation mediated mitochondria-dependent cell death, which also enhances host cellular viability. Taken together, our results suggest that RGNNV infection and expression can trigger ER stress responses, which up-regulate the chaperone GRP78 at early replication stage. Then, GRP78 can interact with RdRp that may enhance the viral replication for increasing viral death factors’ expressions at middle-late replication stage, which can enhance mitochondrial-mediated cell death pathway and viral spreading. These results may provide new insights into the mechanism of ER stress-mediated cell death in RNA viruses.  相似文献   

3.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated throughout the human body. Enzymatic and nonenzymatic antioxidants detoxify ROS and RNS and minimize damage to biomolecules. An imbalance between the production of ROS and RNS and antioxidant capacity leads to a state of "oxidative stress" that contributes to the pathogenesis of a number of human diseases by damaging lipids, protein, and DNA. In general, lung diseases are related to inflammatory processes that generate increased ROS and RNS. The susceptibility of the lung to oxidative injury depends largely on its ability to upregulate protective ROS and RNS scavenging systems. Unfortunately, the primary intracellular antioxidants are expressed at low levels in the human lung and are not acutely induced when exposed to oxidative stresses such as cigarette smoke and hyperoxia. However, the response of extracellular antioxidant enzymes, the critical primary defense against exogenous oxidative stress, increases rapidly and in proportion to oxidative stress. In this paper, we review how antioxidants in the lung respond to oxidative stress in several lung diseases and focus on the mechanisms that upregulate extracellular glutathione peroxidase.  相似文献   

4.
Red‐spotted grouper nervous necrosis virus (RGNNV), the causative agent of viral nervous necrosis disease, has caused high mortality and heavy economic losses in marine aquaculture worldwide. However, changes in host cell metabolism during RGNNV infection remain largely unknown. Here, the global metabolic profiling during RGNNV infection and the roles of cellular fatty acid synthesis in RGNNV infection were investigated. As the infection progressed, 71 intracellular metabolites were significantly altered in RGNNV‐infected cells compared with mock‐infected cells. The levels of metabolites involved in amino acid biosynthesis and metabolism were significantly decreased, whereas those that correlated with fatty acid synthesis were significantly up‐regulated during RGNNV infection. Among them, tryptophan and oleic acid were assessed as the most crucial biomarkers for RGNNV infection. In addition, RGNNV infection induced the formation of lipid droplets and re‐localization of fatty acid synthase (FASN), indicating that RGNNV induced and required lipogenesis for viral infection. The exogenous addition of palmitic acid (PA) enhanced RGNNV infection, and the inhibition of FASN and acetyl‐CoA carboxylase (ACC) significantly decreased RGNNV replication. Additionally, not only inhibition of palmitoylation and phospholipid synthesis, but also destruction of fatty acid β‐oxidation significantly decreased viral replication. These data suggest that cellular fatty acid synthesis and mitochondrial β‐oxidation are essential for RGNNV to complete the viral life cycle. Thus, it has been demonstrated for the first time that RGNNV infection in vitro overtook host cell metabolism and, in that process, cellular fatty acid synthesis was an essential component for RGNNV replication.  相似文献   

5.

Background/Aim

The hepatitis B virus (HBV) infection is accompanied by the induction of oxidative stress, especially mediated by HBV X protein (HBx). Oxidative stress has been implicated in a series of pathological states, such as DNA damage, cell survival and apoptosis. However, the host factor by which cells protect themselves under this oxidative stress is poorly understood.

Methodology/Principal Findings

In this study, we first confirmed that HBV infection significantly induced oxidative stress. Moreover, viral protein HBx plays a major role in the oxidative stress induced by HBV. Importantly, we found that mitochondrial protein SIRT3 overexpression could decrease reactive oxygen species (ROS) induced by HBx while SIRT3 knockdown increased HBx-induced ROS. Importantly, SIRT3 overexpression abolished oxidative damage of HBx-expressing cells as evidenced by γH2AX and AP sites measurements. In contrast, SIRT3 knockdown promoted HBx-induced oxidative damage. In addition, we also observed that oxidant H2O2 markedly promoted HBV replication while the antioxidant N-acetyl-L-cysteine (NAC) inhibited HBV replication. Significantly, SIRT3 overexpression inhibited HBV replication by reducing cellular ROS level.

Conclusions/Significance

Collectively, these data suggest HBx expression induces oxidative stress, which promotes cellular oxidative damage and viral replication during HBV pathogenesis. Mitochondrial protein SIRT3 protected HBx expressing-cells from oxidative damage and inhibited HBV replication possibly by decreased cellular ROS level. These studies shed new light on the physiological significance of SIRT3 on HBx-induced oxidative stress, which can contribute to the liver pathogenesis.  相似文献   

6.
Mitochondria do not only produce less ATP, but they also increase the production of reactive oxygen species (ROS) as by-products of aerobic metabolism in the aging tissues of the human and animals. It is now generally accepted that aging-associated respiratory function decline can result in enhanced production of ROS in mitochondria. Moreover, the activities of free radical-scavenging enzymes are altered in the aging process. The concurrent age-related changes of these two systems result in the elevation of oxidative stress in aging tissues. Within a certain concentration range, ROS may induce stress response of the cells by altering expression of respiratory genes to uphold the energy metabolism to rescue the cell. However, beyond the threshold, ROS may cause a wide spectrum of oxidative damage to various cellular components to result in cell death or elicit apoptosis by induction of mitochondrial membrane permeability transition and release of apoptogenic factors such as cytochrome c. Moreover, oxidative damage and large-scale deletion and duplication of mitochondrial DNA (mtDNA) have been found to increase with age in various tissues of the human. Mitochondria act like a biosensor of oxidative stress and they enable cell to undergo changes in aging and age-related diseases. On the other hand, it has recently been demonstrated that impairment in mitochondrial respiration and oxidative phosphorylation elicits an increase in oxidative stress and causes a host of mtDNA rearrangements and deletions. Here, we review work done in the past few years to support our view that oxidative stress and oxidative damage are a result of concurrent accumulation of mtDNA mutations and defective antioxidant enzymes in human aging.  相似文献   

7.
Because the role of the viral B2 protein in the pathogenesis of nervous necrosis virus infection remains unknown, the aim of the present study was to determine the effects of B2 protein on hydrogen peroxide (H2O2)-mediated cell death via mitochondrial targeting. Using a B2 deletion mutant, the B2 mitochondrial targeting signal sequence (41RTFVISAHAA50) correlated with mitochondrial free radical production and cell death in fish cells, embryonic zebrafish, and human cancer cells. After treatment of grouper fin cells (GF-1) overexpressing B2 protein with the anti-oxidant drug, N-acetylcysteine (NAC), and overexpression of the antioxidant enzymes, zfCu/Zn superoxide dismutase (SOD) and zfCatalase, decreased H2O2 production and cell death were observed. To investigate the correlation between B2 cytotoxicity and H2O2 production in vivo, B2 was injected into zebrafish embryos. Cell damage, as assessed by the acridine orange assay, gradually increased over 24 h post-fertilization, and was accompanied by marked increases in H2O2 production and embryonic death. Increased oxidative stress, as evidenced by the up-regulation of Mn SOD, catalase, and Nrf2, was also observed during this period. Finally, B2-induced dynamin-related protein 1 (Drp1)-mediated mitochondrial fragmentation and cell death could be reversed by NAC and inhibitors of Drp1 and Mdivi in GF-1 cells. Taken together, betanodavirus B2 induces H2O2 production via targeting the mitochondria, where it inhibits complex II function. H2O2 activates Drp1, resulting in its association with the mitochondria, mitochondrial fission and cell death in vitro and in vivo.  相似文献   

8.
Park JG  Oh GT 《BMB reports》2011,44(8):497-505
Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.  相似文献   

9.
Baek YM  Hwang HJ  Kim SW  Hwang HS  Lee SH  Kim JA  Yun JW 《Proteomics》2008,8(22):4748-4767
The endogenous ROS levels were increased during HepG2 apoptosis, whereas they were decreased during SK-N-SH apoptosis in response to capsaicin treatments. We used 2-DE-based proteomics to analyze the altered protein levels in both cells, with special attention on oxidative stress proteins before and after capsaicin treatments. The 2-DE analysis demonstrated that 23 proteins were increased and 26 proteins were decreased significantly (fold change>1.4) in capsaicin-treated apoptotic HepG2 and SK-N-SH cells, respectively. The distinct effect of capsaicin-induced apoptosis on the expression pattern of HepG2 proteins includes the downregulation of some antioxidant enzymes including aldose reductase (AR), catalase, enolase 1, peroxiredoxin 1, but upregulation of peroxiredoxin 6, cytochrome c oxidase, and SOD2. In contrast, most antioxidant enzymes were increased in SK-N-SH cells in response to capsaicin, where catalase might play a pivotal role in maintenance of low ROS levels in the course of apoptosis. The global gene expression for oxidative stress and antioxidant defense genes revealed that 84 gene expressions were not significantly different in HepG2 cells between control and capsaicin-treated cells. In contrast, a number of oxidative genes were downregulated in SK-N-SH cells, supporting the evidence of low ROS environment in apoptotic SK-N-SH cells after capsaicin treatment. It was concluded that the different relationship between endogenous ROS levels and apoptosis of two cancer cells presumably resulted from complicated expression patterns of many oxidative stress and antioxidant genes, rather than the individual role of some classical antioxidant enzymes such as SOD and catalase.  相似文献   

10.
Reactive oxygen species (ROS)-induced damage on host cells and molecules has been considered the most likely proximal mechanism responsible for the age-related decline in organismal performance. Organisms have two possible ways to reduce the negative effect of ROS: disposing of effective antioxidant defenses and minimizing ROS production. The unbalance between the amount of ROS produced and the availability of antioxidant defenses determines the intensity of so-called oxidative stress. Interestingly, most studies that deal with the effect of oxidative stress on organismal performance have focused on the antioxidant defense compartment and, surprisingly, have neglected the mechanisms that control ROS production within mitochondria. Uncoupling proteins (UCPs), mitochondrial transporters of the inner membrane, are involved in the control of redox state of cells and in the production of mitochondrial ROS. Given their function, UCPs might therefore represent a major mechanistic link between metabolic activity and fitness. We suggest that by exploring the role of expression and function of UCPs both in experimental as well as in comparative studies, evolutionary biologists may gain better insight into this link.  相似文献   

11.
Oxidative stress damages cells. NaCl and urea are high in renal medullary interstitial fluid, which is necessary to concentrate urine, but which causes oxidative stress by elevating reactive oxygen species (ROS). Here, we measured the antioxidant enzyme superoxide dismutases (SODs, MnSOD, and Cu/ZnSOD) and catalase in mouse kidney that might mitigate the oxidative stress. MnSOD protein increases progressively from the cortex to the inner medulla, following the gradient of increasing NaCl and urea. MnSOD activity increases proportionately, but MnSOD mRNA does not. Water restriction, which elevates renal medullary NaCl and urea, increases MnSOD protein, accompanied by a proportionate increase in MnSOD enzymatic activity in the inner medulla, but not in the cortex or the outer medulla. In contrast, Cu/ZnSOD and TNF-α (an important regulator of MnSOD) do not vary between the regions of the kidney, and expression of catalase protein actually decreases from the cortex to the inner medulla. Water restriction increases activity of mitochondrial enzymes that catalyze production of ROS in the inner medulla, but reduces NADPH oxidase activity there. We also examined the effect of high NaCl and urea on MnSOD in Madin-Darby canine kidney (MDCK) cells. High NaCl and high urea both increase MnSOD in MDCK cells. This increase in MnSOD protein apparently depends on the elevation of ROS since it is eliminated by the antioxidant N-acetylcysteine, and it occurs without raising osmolality when ROS are elevated by antimycin A or xanthine oxidase plus xanthine. We conclude that ROS, induced by high NaCl and urea, increase MnSOD activity in the renal inner medulla, which moderates oxidative stress.  相似文献   

12.
Luo  Liang  Gong  Yuan Qi  Qi  XieFei  Lai  WenYan  Lan  Haibing  Luo  Yaling 《Molecular and cellular biochemistry》2013,373(1-2):1-9
Tumor necrosis factor-alpha (TNFα) plays a crucial role in inflammatory diseases such as rheumatoid arthritis and postmenopausal osteoporosis. Recently, it has been demonstrated that hydrogen gas, known as a novel antioxidant, can exert therapeutic anti-inflammatory effect in many diseases. In this study, we investigated the effect of treatment with hydrogen molecule (H2) on TNFα-induced cell injury in osteoblast. The osteoblasts isolated from neonatal rat calvariae were cultured. It was found that TNFα suppressed cell viability, induced cell apoptosis, suppressed Runx2 mRNA expression, and inhibited alkaline phosphatase activity, which was reversed by co-incubation with H2. Incubation with TNFα-enhanced intracellular reactive oxygen species (ROS) formation and malondialdehyde production increased NADPH oxidase activity, impaired mitochondrial function marked by increased mitochondrial ROS formation and decreased mitochondrial membrane potential and ATP synthesis, and suppressed activities of antioxidant enzymes including SOD and catalase, which were restored by co-incubation with H2. Treatment with H2 inhibited TNFα-induced activation of NFκB pathway. In addition, treatment with H2 inhibited TNFα-induced nitric oxide (NO) formation through inhibiting iNOS activity. Treatment with H2 inhibited TNFα-induced IL-6 and ICAM-1 mRNA expression. In conclusion, treatment with H2 alleviates TNFα-induced cell injury in osteoblast through abating oxidative stress, preserving mitochondrial function, suppressing inflammation, and enhancing NO bioavailability.  相似文献   

13.
Stroke is an emerging major health problem often resulting in death or disability. Hyperlipidemia, high blood pressure and diabetes are well established risk factors. Endothelial dysfunction associated with these risk factors underlies pathological processes leading to atherogenesis and cerebral ischemic injury. While mechanisms of disease are complex, endothelial dysfunction involves decreased nitric oxide (NO) and elevated levels of reactive oxygen species (ROS). At physiological levels, ROS participate in regulation of cellular metabolism. However, when ROS increase to toxic levels through imbalance of production and neutralization by antioxidant enzymes, they cause cellular injury in the form of lipid peroxidation, protein oxidation and DNA damage. Central nervous system cells are more vulnerable to ROS toxicity due to their inherent higher oxidative metabolism and less antioxidant enzymes, as well as higher content of membranous fatty acids. During ischemic stroke, ROS concentration rises from normal low levels to a peak point during reperfusion possibly underlying apoptosis or cellular necrosis. Clinical trials and animal studies have shown that natural compounds can reduce oxidative stress due to excessive ROS through their antioxidant properties. With further study, we may be able to incorporate these compounds into clinical use with potential efficacy for both the treatment and prevention of stroke.  相似文献   

14.
Clinical evidence suggests that type 2 diabetes therapy can greatly benefit from the suppression of reactive oxygen species generation and the activation or restoration of cellular antioxidant mechanisms. In human, NADPH oxidase (NOX) is the main producer of reactive oxygen species (ROS) that supress the activity of endogenous antioxidant enzymes. In the present study, the antioxidant potential of Gedunin was studied. In silico findings reveal its strong binding affinity with NOX5 C terminal HSP90 binding site that disrupts NOX5 stability and its ability to generate ROS, leading to restoration antioxidant enzymes activities. It was found that Gedunin suppressed hyperglycaemia induced oxidative stress in an in vitro RBC model and markedly reversed glucose induced changes including haemoglobin glycosylation and lipid peroxidation. A significant restoration of activities of cellular antioxidant enzymes; superoxide dismutase, catalase and glutathione peroxidase in the presence of Gedunin revealed its ability to reduce oxidative stress. These results substantiated Gedunin as a bona fide inhibitor of human NOX5 and a ROS scavenging antioxidant with promising therapeutic attributes including its natural origin and inhibition of multiple diabetic targets.  相似文献   

15.
Redox homeostasis is an important host factor determining the outcome of infectious disease. Enterovirus 71 (EV71) infection has become an important endemic disease in Southeast Asia and China. We have previously shown that oxidative stress promotes viral replication, and progeny virus induces oxidative stress in host cells. The detailed mechanism for reactive oxygen species (ROS) generation in infected cells remains elusive. In the current study, we demonstrate that mitochondria were a major ROS source in EV71-infected cells. Mitochondria in productively infected cells underwent morphologic changes and exhibited functional anomalies, such as a decrease in mitochondrial electrochemical potential ΔΨm and an increase in oligomycin-insensitive oxygen consumption. Respiratory control ratio of mitochondria from infected cells was significantly lower than that of normal cells. The total adenine nucleotide pool and ATP content of EV71-infected cells significantly diminished. However, there appeared to be a compensatory increase in mitochondrial mass. Treatment with mito-TEMPO reduced eIF2α phosphorylation and viral replication, suggesting that mitochondrial ROS act to promote viral replication. It is plausible that EV71 infection induces mitochondrial ROS generation, which is essential to viral replication, at the sacrifice of efficient energy production, and that infected cells up-regulate biogenesis of mitochondria to compensate for their functional defect.  相似文献   

16.
Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and subsequent damage to essential molecules, such as lipids, proteins, and DNA. Hence, enhanced ROS production and oxidative injury play a cardinal role in the onset and progression of neurodegenerative disorders. To maintain a proper redox balance, the central nervous system is endowed with an antioxidant defense mechanism consisting of endogenous antioxidant enzymes. Expression of most antioxidant enzymes is tightly controlled by the antioxidant response element (ARE) and is activated by nuclear factor E2-related factor 2 (Nrf2). In past years reports have highlighted the protective effects of Nrf2 activation in reducing oxidative stress in both in vitro and in vivo models of neurodegenerative disorders. Here we provide an overview of the involvement of ROS-induced oxidative damage in Alzheimer's disease, Parkinson's disease, and Huntington's disease and we discuss the potential therapeutic effects of antioxidant enzymes and compounds that activate the Nrf2-ARE pathway.  相似文献   

17.
18.
Role of oxidative stress and antioxidant enzymes in Crohn's disease   总被引:1,自引:0,他引:1  
There is increasing interest in oxidative stress being a potential aetiological factor and/or a triggering factor in Crohn's disease, rather than a concomitant occurrence during the pathogenesis of the disease. Recent research has shown that the immune mononuclear cells of Crohn's disease patients are induced to produce hydrogen peroxide (H2O2). Similarly, the regulation of antioxidant enzymes during disease in these cells has been unravelled, showing that SOD (superoxide dismutase) activity and GPx (glutathione peroxidase) activity is increased during active disease and returns to normal in remission phases. However, catalase remains constantly inhibited which supports the idea that catalase is not a redox-sensitive enzyme, but a regulator of cellular processes. ROS (reactive oxygen species) can be produced under the stimulus of different cytokines such as TNFα (tumour necrosis factor α). It has been shown in different experimental models that they are also able to regulate apoptosis and other cellular processes. The status of oxidative stress elements in Crohn's disease and their possible implications in regulating cellular processes are reviewed in the present paper.  相似文献   

19.
Reactive oxygen species (ROS) and nitric oxide (NO) have a role in the development of pulmonary fibrosis after bleomycin administration. The ROS production induces an antioxidant response, involving superoxide dismutases (SODs), catalase, and glutathione peroxidases. We compared in situ oxidative burden and antioxidant enzyme activity in bleomycin-injured rat lungs and normal controls. ROS expression and catalase, glucose-6-phosphate-dehydrogenase (G6PHD), and NOS/NADPH-diaphorase activity were investigated by using histochemical reactions. Nitric oxide synthase (e-NOS and i-NOS) and SOD (MnSOD, Cu/ZnSOD, ECSOD) expression was investigated immunohistochemically. After treatment ROS production was enhanced in both phagocytes and in type II alveolar epithelial cells. Mn, Cu/Zn, and ECSOD were overexpressed in parenchymal cells, whereas interstitium expressed ECSOD. Catalase and G6PHD activity was moderately increased in parenchymal and inflammatory cells. NOS/NADPH-d activity and i-NOS expression increased in alveolar and bronchiolar epithelia and in inflammatory cells. It can be suggested that the concomitant activation of antioxidant enzymes is not adequate to scavenge the oxidant burden induced by bleomycin lung damage. Inflammatory cells and also epithelial cells are responsible of ROS and NO production. This oxidative and nitrosative stress may be a substantial trigger in TGF-β1 overexpression by activated type II pneumocytes, leading to fibrotic lesions.  相似文献   

20.
Betanodavirus protein alpha induces cell apoptosis or secondary necrosis by a poorly understood process. In the present work, red spotted grouper nervous necrosis virus (RGNNV) RNA 2 was cloned and transfected into tissue culture cells (GF-1) which then underwent apoptosis or post-apoptotic necrosis. In the early apoptotic stage, progressive phosphatidylserine externalization was evident at 24h post-transfection (p.t.) by Annexin V-FLUOS staining. TUNEL assay revealed apoptotic cells at 24-72 h p.t, after which post-apoptotic necrotic cells were identified by acridine orange/ethidium bromide dual dye staining from 48 to 72 h p.t. Protein alpha induced progressive loss of mitochondrial membrane potential (MMP) which was detected in RNA2-transfected GF-1 cells at 24, 48, and 72 h p.t., which correlated with cytochrome c release, especially at 72 h p.t. To assess the effect of zfBcl-xL on cell death, RNA2-transfected cells were co-transfected with zfBcl-x(L). Co-transfection of GF-1 cells prevented loss of MMP at 24 h and 48 h p.t. and blocked initiator caspase-8 and effector caspase-3 activation at 48 h p.t. We conclude that RGNNV protein alpha induces apoptosis followed by secondary necrotic cell death through a mitochondria-mediated death pathway and activation of caspases-8 and -3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号