首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shoots of micropropagated Gentiana acaulis, G. cruciata, G. lutea, and G. purpurea were inoculated with suspensions of Agrobacterium rhizogenes cells, strains ATCC 15834 or A4M70GUS. Adventitious roots appeared at the sites of inoculation in all 4 species. Root tips were excised and cultured on growth regulator-free media for 2-6 years. They exhibited very high branching and plagiotropism. Spontaneous bud initiation occurred in roots of G. cruciata. Roots of G. lutea, G. acaulis and G. purpurea were cultured on media with high kinetin concentration, which induced the formation of friable callus tissues. Only in G. purpurea were these calluses organogenic. Regenerated shoots of G. cruciata and G. purpurea gave rise to plants, that displayed the typical phenotypes of A. rhizogenes-transformed plants: short internodes and rolled leaves. In the roots of G. acaulis and G. cruciata, transformed with A. rhizogenes A4M70GUS, a positive reaction with X-gluc indicated the activity of β-glucuronidase. The DNA extracted from hairy roots and from the roots of transgenic plants hybridized with the appropriate genomic probes in Southern blotting. This is taken as evidence of the stable genetic transformation in the 4 Gentiana species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
A method is described for producing genetically transformed plants from explants of three scentedPelargonium spp. Transgenic hairy root lines were developed fromPelargonium spp leaf explants and microcuttings after inoculation withAgrobacterium rhizogenes strains derived from the agropine A4 strain. Hairy root lines grew prolifically on growth regulator-free medium. Transgenic shoots were regenerated from hairy roots and the plants have been successfully transferred to soil. The phenotype of regenerated plants has been characterized as having abundant root development, more leaves and internodes than the controls, short internodes and highly branched roots and aerial parts. Southern blot analyses have confirmed the transgenic nature of these plants.  相似文献   

3.
Summary Echinacea purpurea seedlings were inoculated with several Agrobacterium rhizogenes strains in order to obtain hairy roots. Infection with A. rhizogenes strains LMG63 and LMG150 resulted in callus formation. Upon infection with strains ATCC 15834 and R1601 hairy roots were obtained. Opine detection confirmed transformation of E. purpurea. Comparative HPLC fingerprint analysis of the alkamides from natural plant source, control tissues, and transformed callus and roots indicated that transformed callus and hairy roots might be a promising source for continuous and standardized production of the dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamide and related amides.Abbreviations HPLC high-pressure liquid chromatography - MS Murashige and Skoog culture medium  相似文献   

4.
5.
This protocol is used to induce transgenic roots on soybean to study the function of genes required in biological processes of the root. Young seedlings with unfolded cotyledons are infected at the cotyledonary node and/or hypocotyl with Agrobacterium rhizogenes carrying the gene construct to be tested and the infection sites are kept in an environment of high humidity. When the emerged hairy roots can support the plants, the main roots are removed and the transgenic roots can be tested. Using this method, almost 100% of the infected plants form hairy roots within 1 month from the start of the experiments.  相似文献   

6.
An efficient and rapid protocol for the establishment of Artemisia tilesii “hairy” root culture is reported. Leaf explants of aseptically growing plants were cocultured with Agrobacterium rhizogenes A4 wild strain or A. rhizogenes carrying the plasmids with nptII and ifn-α2b genes. Root formation on the explants started in 5–6 days after their cocultivation with bacterial suspension. Prolongation of explant cultivation time on the medium without cefotaxime led to stimulation of root growth. The effects of sucrose concentration as well as of the levels of synthetic indole-3-butyric acid (IBA) and native growth regulator Emistim on the stimulation of A. tilesii “hairy” root growth were studied. Maximum stimulating effect both for the control and for transgenic roots was observed in case of root cultivation on the media supplemented with IBA—up to 7.95- and 9.1-fold biomass increase, respectively. Cultivation on the medium with 10 μl/L Emistime has also led to the control roots growth stimulation (up to 2.75-fold). Emistime at 5 μl/L concentration led to 5.46-fold mass increase in only one “hairy” root line. Higher sucrose content (40 g/L) stimulated growth of two hairy root lines but had no effect on growth of the control roots.  相似文献   

7.
The regenerated shoot segments of Alhagi pseudalhagi were sliced and infected with Agrobacterium rhizogenes strain A4. The hairy roots and transformed calli were obtained through selection on hormone free MS medium. The transformants were cultured on MS medium with 2 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5-1 mg/L 6-benzylaminopurine (6-BA) to induce calli. 3 mg/L 6-BA and 0.5 mg/L naphthalene acetic acid (NAA) were applied for shoot differentiation. Shoots were planted on MS medium with 2 mg/L indole-3-butyric acid (IBA) and produced roots. Opine analysis proved the integration and expression of T-DNA in over 95% hairy roots, 75% transformed calli and transformed plantlets respectively. The 81% hairy root cells had normal chromosome numbers (2n = 18). The alterations of chromosome number were observed. After one year of subculturing, the regeneration ability of transformants was maintained.  相似文献   

8.
 Hairy roots of Panax ginseng were obtained after root disks were infected with wild-type strain Agrobacterium rhizogenes 15834. Three lines of hairy roots with different pigmentation were selected. Embryogenic callus was induced on Murashige and Skoog medium containing 1.0 mg/l 2,4-D. The frequency of embryogenic callus formation was 37.4% in a line with red pigmentation. Somatic embryo development from embryogenic callus was efficiently achieved by lowering the concentration of 2,4-D (0.5 mg/l). After the germination of somatic embryos on medium with 10 mg/l GA3, the embryos were transferred to 1/2-MS medium without GA3. The transformed ginseng plantlets had an actively growing root system with abundant lateral roots. The phenotypical alteration of transformed ginseng plants might be valuable character for increasing root yield. Received: 27 March 1999 / Revision received: 18 May 1999 / Accepted 8 July 1999  相似文献   

9.
Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5±3.5%) as compared to stem (32.7±4.8%) or cotyledon (16.2±5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5±9.8%) than that of non-transformed roots (31.7 ±9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.Communicated by M.R. Davey  相似文献   

10.
Summary Gene transfer and plant regeneration systems have been developed for European larch (Larix decidua Mill.) in our laboratory. Aseptically germinated young seedlings were hypocotyl wound-inoculated withAgrobacterium rhizogenes strains 11325 containing a wild-type Ri (root-inducing) plasmid. Swollen stems appeared at infected wounds followed by either abundant hairy roots or adventitious shoot buds that developed within 3 to 4 wk after inoculation. No symptoms were seen on wounded but uninoculated seedlings. We demonstrated agrobacteria attached to larch cells by examination of scanning electron micrographs. Subsequently, calli derived from symptomatic tissues exhibited phytohormone autotrophic growth. Adventitious buds were elongated and rooted in vitro before being transferred to the greenhouse where the transformed whole plants grew normally. Transformants tested positive for opine production and transformation was further confirmed by Southern blot analysis with larch genomic DNAs isolated from both proliferated calli and needle tissue of transgenic plants.  相似文献   

11.
An efficient protocol for the establishment of transformed root culture of Verbascum xanthophoeniceum using sonication-assisted Agrobacterium rhizogenes-mediated transformation is reported. Only 10 days after the inoculation with A. rhizogenes ATCC 15834 and 45 s ultrasound exposure, hairy roots appeared on 75% of the Verbascum leaves. Ten hairy root lines were isolated, although only half of them were free of bacterial contamination and started growing when excised from mother explants. The transgenic nature of the most vigorously growing hairy root clones (VX1 and VX6) was confirmed by polymerase chain reaction. Under submerged cultivation both hairy root clones accumulated high biomass amounts (12.8 and 14.3 g L−1, respectively) and significant amounts of bioactive phenylethanoid glycoside verbascoside (over 6-times more than in mother plant leaves). LC-APCI-MS analyses confirmed verbascoside accumulation in hairy root clones along with three other phenylethanoid glycosides (forsythoside B, leucosceptoside B and martynoside) and an iridoid glycoside aucubin. This is the first report on the induction of hairy roots of Verbascum plants.  相似文献   

12.
13.
An Agrobacterium rhizogenes-mediated transformation system for Rubia peregrina L. has been established by co-cultivation of callus cultures or by direct infection of explants with A. rhizogenes LBA 9402 harbouring the binary vector pMON 9703 containing gus and npt-II genes as markers. The putative transformed roots were selected on medium containing kanamycin (25 mg l-1). Antibiotic resistant root clones were subjected to histochemical analysis for the localisation of -glucuronidase activity. Polymerase chain reaction was used to confirm the presence of gus, npt-II and T L border sequences in the transformed root clones. Spontaneous regeneration of shoots was observed from 30 day-old transgenic roots. Total anthraquinone and alizarin contents of transgenic root cultures were measured by spectrophotometry and by high performance liquid chromatography. The accumulation of total anthraquinones in transformed roots was found to be approximately 2-fold higher than that found in one year-old field grown roots (2.12±0.12 and 1.23±0.12 mg g-1 dry weight, respectively). Alizarin was found to be the major anthraquinone in transformed root cultures and was found to be approximately 3-fold higher than in field grown roots.Abbreviations BA 6-benzyladenine - B5 Gamborg B5 medium - gus -glucuronidase gene - GUS -glucuronidase - HPLC high performance liquid chromatography - MS Murashige and Skoog medium - NAA -naphthalene acetic acid - npt-II neomycin phosphotransferase II gene - OD600 optical density at 600 nm - PCR polymerase chain reaction - T L left border sequence of T-DNA - vir D1 virulence D1 gene - YMB yeast mannitol broth  相似文献   

14.
The production of transgenic roots was scored for eight Brassica oleracea cultivars from broccoli, cabbage, cauliflower and kale following inoculation with an Agrobacterium rhizogenes cell line carrying a binary plasmid bearing the green fluorescence protein (gfp) gene in the T-DNA. Significant differences in the numbers of explants producing transgenic roots were observed between cultivars, ranging from 1.4% for Marathon F1 to 57.8% for the Green Duke F1. Three F1 cultivars were subjected to anther culture, and doubled-haploid (DH) lines were used for transformation. The DH lines produced showed considerable variation for transgenic root production with some lines showing increased efficiency compared to the parental F1 cultivar. Grouping of the DH lines into response classes with respect to transgenic root production allowed the development of potential genetic models to explain the variation in performance released from each F1 cultivar. No apparent segregation distortion for transgenic root production was observed in the DH lines following anther culture.  相似文献   

15.
徐悦  曹英萍  王玉  付春祥 《植物学报》1983,54(4):515-521
发根农杆菌(Agrobacterium rhizogenes)侵染植物后可诱导植物产生毛状根。菠菜(Spinacia oleracea)是常见的食用蔬菜, 目前尚未见菠菜毛状根的研究报道。经筛选得到适合诱导菠菜毛状根的发根农杆菌菌株LBA9402, LBA9402侵染菠菜外植体茎后, 毛状根的诱导率最高可达16%。菠菜毛状根呈白色, 具有丰富的根毛, 能在无外源激素的固体培养基上快速增殖生长。通过诱导菠菜毛状根产生愈伤组织并进行分化, 获得了菠菜毛状根的再生植株, 再生率为8%。此外, LBA9402可将含有Ri质粒的T-DNA和携带外源GFP基因的Ti质粒T-DNA共同导入外植体中。PCR检测和荧光显微观察结果显示, rolB及GFP基因在菠菜毛状根基因组中稳定表达, 共转化频率为50%。  相似文献   

16.
发根农杆菌(Agrobacterium rhizogenes)侵染植物后可诱导植物产生毛状根。菠菜(Spinacia oleracea)是常见的食用蔬菜, 目前尚未见菠菜毛状根的研究报道。经筛选得到适合诱导菠菜毛状根的发根农杆菌菌株LBA9402, LBA9402侵染菠菜外植体茎后, 毛状根的诱导率最高可达16%。菠菜毛状根呈白色, 具有丰富的根毛, 能在无外源激素的固体培养基上快速增殖生长。通过诱导菠菜毛状根产生愈伤组织并进行分化, 获得了菠菜毛状根的再生植株, 再生率为8%。此外, LBA9402可将含有Ri质粒的T-DNA和携带外源GFP基因的Ti质粒T-DNA共同导入外植体中。PCR检测和荧光显微观察结果显示, rolB及GFP基因在菠菜毛状根基因组中稳定表达, 共转化频率为50%。  相似文献   

17.
纤维植物罗布麻发根的诱导及植株再生   总被引:1,自引:0,他引:1  
利用3种发根农杆菌(LBA9402.R601,和R1000)转化纤维植物罗布麻无菌种子苗的根茎叶不同外植体部位,首次诱导其生成发根并实现了直接由发根途径的植株再生.罗布麻发根诱导与所用的发根农杆菌菌株,外植体部位及光周期密切相关.发根农杆菌LBA9402感染罗布麻的根外植体,实现了最高转化率达100%.与LBA9402及R601相比,被发根农杆菌R1000感染的根外植体适合在黑暗环境下培养.其诱导生成的发根密度可达平均每个外植体22条.在不加激素的1/2 MS培养基上,LBA9402和R601诱导产生的发根可以诱导生成不定芽,不定芽诱导率达20%.不定芽切下后,在不加激素的1/2 MS培养基上2周内可以诱导生根.通过聚合酶链式反应(PCR)对发根及再生植株进行了鉴定,证明发根农杆菌的T-DNA插入了植物的基因组.为罗布麻的分子育种建立了稳定的转化及再生体系,为下一步通过转入外源基因改善其农艺性状奠定了基础.  相似文献   

18.
"Hairy" roots of lettuce Lactuca sativa and regenerated plants with interferon-alpha2b gene had been obtained via Agrobacterium rhizogenes-mediated transformation. According to the results of PCR and rt-PCR analyses the studied plants had ifn-alpha2b gene. The regenerated plants differed from the plants of wild type by elongated internodes, early flower-bearing stem formation and purple coloration of leaves in artificial illumination conditions.  相似文献   

19.
TheAgrobacterium rhizogenes-mediated transformation procedure was developed by using the hygromycin B phosphotransferase gene (hph) as a selective marker for the oil-producing fungusUmbelopsis isabellina. Different conditions were combined to increase the transformation efficiency. The highest efficiency was obtained by usingA. rhizogenes strain R105 and a vector with zygomycete promoter. Southern blot analysis demonstrated that 71 % of transformants contained random integrations of T-DNA sequences under optimal conditions. We randomly selected 115 positive transformants resistant to hygromycin to analyze the amount of total fatty acid and gamma-linolenic acid (GLA). Six transformants produced a higher amount of total fatty acids than the wild strain, and one transformant also produced a higher level of GLA than the wild strain in gas chromatography analysis. This is the first report about usingA. rhizogenes strain R105 and germinated conidia to transform successfully the recalcitrant zygomycetes and to obtain transformants with a stable phenotype.  相似文献   

20.
In this review, methods of Agrobacterium T-DNA transfer into plant cells in planta are discussed. The main focus is on the technologies of gene transfer into generative plant cells as a part of Agrobacterium T-DNA. The influence of the plant genotype, bacterial strain, vector construction type, inoculation medium composition, and the conditions of plant treatment with Agrobacterium on the efficiency of Agrobacterium transformation in planta is analysed. Based on literature and personal experimental data, the possible mechanism of Agrobacterium transformation of generative plant cells in planta is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号