首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male infertility is one possible consequence of a group of disorders arising from dysfunction of cilia. Ciliopathies include primary ciliary dyskinesia, polycystic kidney disease, Usher syndrome, nephronophthisis, Bardet-Biedl syndrome, Alstrom syndrome, and Meckel-Gruber syndrome as well as some forms of retinal degenerations. Mutations in the retinitis pigmentosa GTPase regulator gene (RPGR) are best known for leading to retinal degeneration but have also been associated with ciliary dysfunctions affecting other tissues. To further study the involvement of RPGR in ciliopathies, transgenic mouse lines overexpressing RPGR were generated. Animals carrying the transgene in varying copy numbers were investigated. We found that infertility due to aberrant spermatozoa correlated with increased copy numbers. In animals with moderately increased gene copies of Rpgr, structural disorganization in the flagellar midpiece, outer dense fibers, and fibrous sheath was apparent. In contrast, in animals with high copy numbers, condensed sperm heads were present, but the flagellum was absent in the vast majority of spermatozoa, although early steps of flagellar biogenesis were observed. This complexity of defects in flagellar assembly suggests a role of RPGR in intraflagellar transport processes.  相似文献   

2.
Peroxisomal testis-specific 1 gene (Pxt1) is the only male germ cell-specific gene that encodes a peroxisomal protein known to date. To elucidate the role of Pxt1 in spermatogenesis, we generated transgenic mice expressing a c-MYC-PXT1 fusion protein under the control of the PGK2 promoter. Overexpression of Pxt1 resulted in induction of male germ cells' apoptosis mainly in primary spermatocytes, finally leading to male infertility. This prompted us to analyze the proapoptotic character of mouse PXT1, which harbors a BH3-like domain in the N-terminal part. In different cell lines, the overexpression of PXT1 also resulted in a dramatic increase of apoptosis, whereas the deletion of the BH3-like domain significantly reduced cell death events, thereby confirming that the domain is functional and essential for the proapoptotic activity of PXT1. Moreover, we demonstrated that PXT1 interacts with apoptosis regulator BAT3, which, if overexpressed, can protect cells from the PXT1-induced apoptosis. The PXT1-BAT3 association leads to PXT1 relocation from the cytoplasm to the nucleus. In summary, we demonstrated that PXT1 induces apoptosis via the BH3-like domain and that this process is inhibited by BAT3.  相似文献   

3.
《Developmental cell》2022,57(7):901-913.e4
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

4.
BRCA2 deficiency in mice leads to meiotic impairment and infertility   总被引:6,自引:0,他引:6  
The role of Brca2 in gametogenesis has been obscure because of embryonic lethality of the knockout mice. We generated Brca2-null mice carrying a human BAC with the BRCA2 gene. This construct rescues embryonic lethality and the mice develop normally. However, there is poor expression of the transgene in the gonads and the mice are infertile, allowing examination of the function of BRCA2 in gametogenesis. BRCA2-deficient spermatocytes fail to progress beyond the early prophase I stage of meiosis. Observations on localization of recombination-related and spermatogenic-related proteins suggest that the spermatocytes undergo early steps of recombination (DNA double strand break formation), but fail to complete recombination or initiate spermiogenic development. In contrast to the early meiotic prophase arrest of spermatocytes, some mutant oocytes can progress through meiotic prophase I, albeit with a high frequency of nuclear abnormalities, and can be fertilized and produce embryos. Nonetheless, there is marked depletion of germ cells in adult females. These studies provide evidence for key roles of the BRCA2 protein in mammalian gametogenesis and meiotic success.  相似文献   

5.
Dicer1, an RNase III endonuclease, is indispensable for the maturation of miRNA and siRNA, which control gene expression through the RNAi pathway. The diverse functions of miRNA involving multiple developmental processes have been elucidated, but the role of Dicer1 in spermatogenesis is just beginning to be revealed. Mice lacking Dicer1 were reported to be embryonic lethal at E7.5. In the present study, mice with a Dicer1 conditional allele were crossed with Vasa-cre transgenic mice to delete Dicer1 as early as the prospermatogonia stage (at E15). At P40, seminiferous tubules of Dicer1 deficient mice showed several aberrant phenotypes. A large number of apoptotic germ cells were detected by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, but several events in meiosis of spermatocytes appeared unaffected. The mutant mice were found to be sterile, likely due to the extensive decrease in number and morphological abnormalities of mature sperm in the epididymis, which, together with the numerous haploid cells in the testis, indicated a severely affected transition from round to functional elongated spermatozoa. Additionally, we found milder phenotypes when Dicer1 was inactivated in later stages of spermatogenesis in Stra8-cre and Pgk2-cre transgenic mice. In conclusion, our findings suggest that the loss of Dicer1 has a continuous and cumulative effect on the process of spermatogenesis and blocks the germ cells in the stage of round spermatids to a large extent, ultimately leading to the generation of abnormal sperm.  相似文献   

6.
7.
The role of pituitary gonadotropins in the regulation of spermatogenesis has been unequivocally demonstrated, although, the precise mechanism of this regulation is not clearly understood. Previous studies have shown that specific immunoneutralization of LH/testosterone caused apoptotic cell death of meiotic and post-meiotic germ cells while that of FSH resulted in similar death of meiotic cells. In the present study, the death process of germ cells has been characterized by depleting both FSH and testosterone by administering two different potent GnRH antagonists, Cetrorelix and Acyline to both rats and mice. Pro-survival factors like Bcl-2 and Bcl-x/l were unaltered in germ cells due to GnRH antagonist treatment, although a significant increase in several pro-apoptotic markers including Fas and Bax were evident at both protein and RNA levels. This culminated in cytochrome C release from mitochondria and eventually increase in the activity of caspase-8 and caspase-3. These data suggest that both extrinsic and intrinsic apoptotic death pathways are operative in the germ cells death following decrease in FSH and testosterone levels. Multiple injections of GnRH antagonist resulted in complete disappearance of germ cells except the spermatogonial cells and discontinuation of the treatment resulted in full recovery of spermatogenesis. In conclusion our present data suggest that the principal role of FSH and testosterone is to maintain spermatogenic homeostasis by inhibiting death signals for the germ cells.  相似文献   

8.
9.
10.
11.
The unique cell cycles that characterize various aspects of the differentiation of germ cells provide a unique opportunity to understand heretofore elusive aspects of the in vivo function of cell cycle regulators. Key components of the cell cycle machinery are the regulatory sub-units, the cyclins, and their catalytic partners, the cyclin-dependent kinases. Some of the cyclins exhibit unique patterns of expression of germ cells that suggest possible concomitant distinct functions, predictions that are being explored by targeted mutagenesis in mouse models. A novel, meiosis-specific function has been shown for one of the A-type cyclins, cyclin A1. Embryonic lethality has obviated understanding of the germline functions of cyclin A2 and cyclin B1, while yet other cyclins, although expressed at specific stages of germ cell development, may have less essential function in the male germline.  相似文献   

12.
Targeted deletion of Tssk1 and 2 resulted in male chimeras which produced sperm/spermatogenic cells bearing the mutant allele, however this allele was never transmitted to offspring, indicating infertility due to haploinsufficiency. Morphological defects in chimeras included failure to form elongated spermatids, apoptosis of spermatocytes and spermatids, and the appearance of numerous round cells in the epididymal lumen. Characterization of TSSK2 and its interactions with the substrate, TSKS, were further investigated in human and mouse. The presence of both kinase and substrate in the testis was confirmed, while persistence of both proteins in spermatozoa was revealed for the first time. In vivo binding interactions between TSSK2 and TSKS were established through co-immunoprecipitation of TSSK2/TSKS complexes from both human sperm and mouse testis extracts. A role for the human TSKS N-terminus in enzyme binding was defined by deletion mapping. TSKS immunoprecipitated from both mouse testis and human sperm extracts was actively phosphorylated. Ser281 was identified as a phosphorylation site in mouse TSKS. These results confirm both TSSK 2 and TSKS persist in sperm, define the critical role of TSKS' N-terminus in enzyme interaction, identify Ser 281 as a TSKS phosphorylation site and indicate an indispensable role for TSSK 1 and 2 in spermiogenesis.  相似文献   

13.
A germ cell nuclear antigen with approximately 44-kDa molecular weight was identified by a novel monoclonal antibody designated as Mab 2F2 from the library we have accumulated against rat testicular cells. In immature 20-day-old and adult rat testis the recognized antigen was expressed in the nuclei of early meiotic cells from preleptotene to early pachytene spermatocytes exhibiting a stage-specific appearance in the cycle of the seminiferous epithelium. The immunoreactivity was clearly associated with the meiotic chromosomes. The antigen was not detected in the late pachytene spermatocytes and more advanced stages of spermatogenesis. No labeling was observed in spermatogonia and somatic Sertoli and Leydig cells. The pattern of expression of the recognized antigen during early meiotic stages of spermatogenesis but not in mitotically dividing spermatogonia could strengthen its possible role in meiotic division.  相似文献   

14.
15.
While it is known that Retinoic Acid (RA) induces meiosis in mouse female fetal gonads, the mechanisms which regulate this process during spermatogenesis are poorly understood. We show that the All trans RA derivative (ATRA) and Kit Ligand (KL) increase meiotic entry of postnatal mouse spermatogonia in vitro without synergism. Competence to enter meiosis is reached by spermatogonia only at the stage in which they undergo Kit-dependent divisions. Besides increasing Kit expression in spermatogonia, ATRA also upregulates KL expression in Sertoli cells. Both ATRA and KL increase the expression of Stimulated by Retinoic Acid Gene 8 and Dmc1, an early meiotic marker. A specific Kit tyrosine kinase inhibitor prevents the increase in the number of meiotic cells induced by both the two factors, suggesting that they converge on common Kit-dependent signalling pathways. Meiotic entry induced by ATRA and KL is independent from their ability to affect germ cell viability, and is mediated by the activation of PI3K and MAPK pathways through Kit autophosphorylation. ATRA-induced phosphorylation of the two downstream kinases is mediated by a non-genomic mechanism.

These data suggest that RA may control the timing of meiosis by influencing both the somatic and the germ cell compartment of the postnatal testis through the activation of the KL/Kit system.  相似文献   

16.
A new rapid micronucleus method is presented for the detection of chromosomal damage induced in spermatocyte stages of mammals. Analysis of micronuclei is done in early spermatids that have been isolated from testis tubules in a special testis isolation medium supplemented with enzymes (collagenase, trypsin and DNAase).  相似文献   

17.
In germ cells, the function of which is to form the next generation, apoptotic cell death occurs during development, as in the case of somatic cells. In this study, we show that Bcl-x knockout heterozygous (Bcl-x(+/-)) mice exhibit severe defects in male germ cells during development. A substantial increase in apoptosis of male germ cells occurs at around embryonic day 13.5 (E13.5) in Bcl-x(+/-) embryos, leading to hypoplasia of postnatal testes and reduced fertility. On the other hand, female germ cells at the same stages do not show discernible differences between wild-type and Bcl-x(+/-) embryos. This phenotype of Bcl-x haploinsufficiency shows that regulation of apoptosis becomes different between the sexes at around the onset of sex differentiation. Through this study, we found that, in wild-type embryos, (1) apoptosis is much more frequent (approximately 10 times) in the male than in female germ cells, and (2) expression of Bcl-xL, but not that of Bax, is higher in female than in male germ cells, at around E13.5. Male fetal germ cells, cultured with gonadal somatic cells in vitro, showed higher frequencies of apoptosis than those cultured without gonadal somatic cells. On the other hand, in the absence of gonadal somatic cells, both male and female fetal germ cells in vitro showed similar frequencies of apoptosis to female fetal germ cells in vivo. Therefore, male germ cell apoptosis, of which the default pathway is similar to that of the female, is likely to be influenced by male gonadal environments.  相似文献   

18.
Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT–PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.  相似文献   

19.
Abnormal spermatogenesis in men with Y-chromosome microdeletions suggests that genes important for spermatogenesis have been removed from these individuals. VCY2 is a testis-specific gene that locates in the most frequently deleted azoospermia factor c region in the Y chromosome. We have raised an antiserum to VCY2 and used it to characterize the localization of VCY2 in human testis. Using Western blot analysis, the affinity-purified polyclonal VCY2 antibody gave a single specific band of approximately 14 kDa in size, corresponding to the expected size of VCY2 in all the collected human testicular biopsy specimens with normal spermatogenesis. Immunohistochemical analyses showed that VCY2 localized to the nuclei of spermatogonia, spermatocytes, and round spermatids, except elongated spermatids. At the ultrastructural level, VCY2 expression was found in the nucleus of human ejaculated spermatozoa. To determine the possible relationship of VCY2 with the pathogenesis of male infertility, we examined a group of infertile men with and without Y-chromosome microdeletions and with known testicular pathology using VCY2 antibody. VCY2 was weakly expressed at the spermatogonia and immunonegative in spermatocytes and round spermatids in testicular biopsy specimens with maturation arrest or hypospermatogenesis. The specific localization of the protein in germ cell nuclei indicates that VCY2 is likely to function in male germ cell development. The impaired expression of VCY2 in infertile men suggests its involvement in the pathogenesis of male infertility.  相似文献   

20.
Xu J  Wang M  Gao X  Hu B  Du Y  Zhou J  Tian X  Huang X 《PloS one》2011,6(4):e18763
To ensure equal chromosome segregation and the stability of the genome during cell division, Separase is strictly regulated primarily by Securin binding and inhibitory phosphorylation. By generating a mouse model that contained a mutation to the inhibitory phosphosite of Separase, we demonstrated that mice of both sexes are infertile. We showed that Separase deregulation leads to chromosome mis-segregation, genome instability, and eventually apoptosis of primordial germ cells (PGCs) during embryonic oogenesis. Although the PGCs of mutant male mice were completely depleted, a population of PGCs from mutant females survived Separase deregulation. The surviving PGCs completed oogenesis but produced deficient initial follicles. These results indicate a sexual dimorphism effect on PGCs from Separase deregulation, which may be correlated with a gender-specific discrepancy of Securin. Our results reveal that Separase phospho-regulation is critical for genome stability in oogenesis. Furthermore, we provided the first evidence of a pre-zygotic mitotic chromosome segregation error resulting from Separase deregulation, whose sex-specific differences may be a reason for the sexual dimorphism of aneuploidy in gametogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号