首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MicroRNA expression profiling of single whole embryonic stem cells   总被引:1,自引:0,他引:1       下载免费PDF全文
MicroRNAs (miRNAs) are a class of 17-25 nt non-coding RNAs that have been shown to have critical functions in a wide variety of biological processes during development. Recently developed miRNA microarray techniques have helped to accelerate research on miRNAs. However, in some instances there is only a limited amount of material available for analysis, which requires more sensitive techniques that can preferably work on single cells. Here we demonstrate that it is possible to analyse miRNA in single cells by using a real-time PCR-based 220-plex miRNA expression profiling method. Development of this technique will greatly facilitate miRNA-related research on cells, such as the founder population of primordial germ cells where rapid and dynamic changes occur in a few cells, and for analysing heterogeneous population of cells. In these and similar cases, our method of single cell analysis is critical for elucidating the diverse roles of miRNAs.  相似文献   

3.
MicroRNAs (or miRNAs) are small non-coding RNAs (21-25 nucleotides) that are involved in a wide range of activities related to the development and differentiation of cells. Comparison of the miRNA expression profiles of mouse P19 embryonic carcinoma cells with those of differentiated neural stem cells showed that the expression level of 65 miRNAs changed (2-fold) after differentiation. MiR-124a was dramatically upregulated (more than 20-fold) while miRNAs of the miR-302 family and those in the miR-290-295 cluster were strongly down-regulated. Further analysis revealed that some important factors such as Oct4 and Sox2 appeared to be involved in the regulation of these miRNAs. These results may contribute to a better understanding of miRNA-regulated neural differentiation in early mouse embryos.  相似文献   

4.
Hepatic differentiation of murine embryonic stem cells.   总被引:49,自引:0,他引:49  
Murine embryonic stem (ES) cells can replicate indefinitely in culture and can give rise to all tissues, including the germline, when reimplanted into a murine blastocyst. ES cells can also be differentiated in vitro into a wide range of cell types. We have utilized a liver-specific marker to demonstrate that murine ES cells can differentiate into hepatocytes in vitro. We have used ES cells carrying a gene trap vector insertion (I.114) into an ankyrin repeat-containing gene (Gtar) that we have previously shown provides an exclusive beta-galactosidase marker for the early differentiation of hepatocytes in vivo. beta-Galactosidase-positive cells were differentiated from I.114 ES cells in vitro. The identity of these cells was confirmed by the expression of the proteins alpha-fetoprotein, albumin, and transferrin and by the fact that they have an ultrastructural appearance consistent with that of embryonic hepatocytes. We propose that this model system of hepatic differentiation in vitro could be used to define factors that are involved in specification of the hepatocyte lineage. In addition, human ES cells have recently been derived and it has been proposed that they may provide a source of differentiated cell types for cell replacement therapies in the treatment of a variety of diseases.  相似文献   

5.
Pluripotent murine embryonic stem (ES) cells can differentiate into all cell types both in vivo and in vitro. Based on their capability to proliferate and differentiate, these ES cells appear as a very promising tool for cell therapy. The understanding of the molecular mechanisms underlying the neural differentiation of the ES cells is a pre-requisite for selecting adequately the cells and conditions which will be able to correctly repair damaged brain and restore altered cognitive functions. Different methods allow obtaining neural cells from ES cells. Most of the techniques differentiate ES cells by treating embryoid bodies in order to keep an embryonic organization. More recent techniques, based on conditioned media, induce a direct differentiation of ES cells into neural cells, without going through the step of embryonic bodies. Beyond the fact that these techniques allow obtaining large numbers of neural precursors and more differentiated neural cells, these approaches also provide valuable information on the process of differentiation of ES cells into neural cells. Indeed, sequential studies of this process of differentiation have revealed that globally ES cells differentiating into neural cells in vitro recapitulate the molecular events governing the in vivo differentiation of neural cells. Altogether these data suggest that murine ES cells remain a highly valuable tool to obtain large amounts of precursor and differentiated neural cells as well as to get a better understanding of the mechanisms of neural differentiation, prior to a potential move towards the use of human ES cells in therapy.  相似文献   

6.
Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments.  相似文献   

7.
8.
All-trans-retinoic acid (RA) plays an important physiological role in embryonic development and is teratogenic in large doses in almost all species. p53, a tumor suppressor gene encodes phosphoproteins, which regulate cellular proliferation, differentiation, and apoptosis. Temporal modulation of p53 by retinoic acid was investigated in murine embryonic stem cells during differentiation and apoptosis. Undifferentiated embryonic stem cells express a high level of p53 mRNA and protein followed by a decrease in p53 levels as differentiation proceeds. The addition of retinoic acid during 8–10 days of differentiation increased the levels of p53 mRNA and protein, accompanied by accelerated neural differentiation and apoptosis. Marked increase in apoptosis was observed at 10–20 h after retinoic acid treatment when compared with untreated controls. Retinoic acid-induced morphological differentiation resulted in predominantly neural-type cells. Maximum increase in p53 mRNA in retinoic acid-treated cells occurred on day 17, whereas maximum protein synthesis occurred on days 14–17, which coincided with increased neural differentiation and proliferation. Increased p53 levels did not induce p21 transactivation, interestingly a decrease in p21 was observed on day 17 on exposure to retinoic acid. The level of p53 declined by day 21 of differentiation. The results demonstrated that retinoic acid-mediated apoptosis preceded the changes in p53 expression, suggesting that p53 induction does not initiate retinoic acid-induced apoptosis during development. However, retinoic acid accelerated neural differentiation and increased the expression of p53 in proliferating neural cells, corroborated by decreased p21 levels, indicating the importance of cell type and stage specificity of p53 function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
10.
Currently, there are no differentiation strategies for human embryonic stem cells (hESCs) that efficiently produce one specific cell type, possibly because of lack of understanding of the genes that control signaling events prior to overt differentiation. sed HepG2 cell conditioned medium (MEDII), which induces early differentiation in mouse ES cells while retaining pluripotent markers, to query gene expression in hESCs. Treatment of adherent hESCs with 50% MEDII medium effected differentiation to a cell type with gene expression similar to primitive streak stage cells of mouse embryos. MEDII treatment up-regulates TDGF1 (Cripto), a gene essential for anterior-posterior axis and mesoderm formation in mouse embryos and a key component of the TGFB1/NODAL signaling pathway. LEFTYA, an antagonist of NODAL/TDGF1 signaling expressed in anterior visceral endoderm, is down-regulated with MEDII treatment, as is FST, an inhibitor of mesoderm induction via the related INHBE1 pathway. In summary, the TGFB1/NODAL pathway is important for primitive-streak and mesoderm formation and in using MEDII, we present a means for generating an in vitro cell population that maintains pluripotent gene expression (POU5F1, NANOG) and SSEA-4 markers while regulating genes in the TGFB1/NODAL pathway, which may lead to more uniform formation of mesoderm in vitro.  相似文献   

11.
BMP-4 inhibits neural differentiation of murine embryonic stem cells.   总被引:10,自引:0,他引:10  
Members of the transforming growth factor-beta superfamily, including bone morphogenetic protein 4 (BMP-4), have been implicated as regulators of neuronal and glial differentiation. To test for a possible role of BMP-4 in early mammalian neural specification, we examined its effect on neurogenesis in aggregate cultures of mouse embryonic stem (ES) cells. Compared to control aggregates, in which up to 20% of the cells acquired immunoreactivity for the neuron-specific antibody TuJ1, aggregates maintained for 8 days in serum-free medium containing BMP-4 generated 5- to 10-fold fewer neurons. The action of BMP-4 was dose dependent and restricted to the fifth through eighth day in suspension. In addition to the reduction in neurons, we observed that ES cell cultures exposed to BMP-4 contained fewer cells that were immunoreactive for glial fibrillary acidic protein or the HNK-1 neural antigen. Furthermore, under phase contrast, cultures prepared from BMP-4-treated aggregates contained a significant proportion of nonneuronal cells with a characteristic flat, elongated morphology. These cells were immunoreactive for antibodies to the intermediate filament protein vimentin; they were rare or absent in control cultures. Treatment with BMP-4 enhanced the expression of the early mesodermal genes brachyury and tbx6 but had relatively little effect on total cell number or cell death. Coapplication of the BMP-4 antagonist noggin counteracted the effect of exogenous BMP-4, but noggin alone had no effect on neuralization in either the absence or presence of retinoids. Collectively, our results suggest that BMP-4 can overcome the neuralizing action of retinoic acid to enhance mesodermal differentiation of murine ES cells.  相似文献   

12.
Although the ES-D3 murine embryonic stem cell line was one of the first derived, little information exists on the in vitro differentiation potential of these cells. We have used immunocytochemical and flow cytometric methods to monitor ES-D3 embryoid body differentiation in vitro during a 21-d period. Spontaneous differentiation of embryoid body cells was induced by leukemia inhibitory factor withdrawal in the absence of feeder cells. The pluripotent stem cell markers Oct-3/4, SSEA-1, and EMA-1 were found to persist for at least 7 d, whereas the primitive endoderm marker cytokeratin endo-A was expressed at increasing levels from day 6. The localization of these antigens within the embryoid bodies suggested that embryonic ectoderm- and primitive endoderm-derived tissues were segregated. Localized expression of class III beta-tubulin and sarcomeric myosin also was detected, indicating that representatives of all three embryonic germ layers were present after induction of differentiation in vitro.  相似文献   

13.
Human adipose-derived stem cells (hADSC) are capable of differentiating into an osteogenic lineage. It is believed that microRNAs (miRNAs) play important roles in regulating this osteogenic differentiation of human adipose-derived cells, although its molecular mechanism remains unclear. We investigated the miRNA expression profile during osteogenic differentiation of hADSCs, and assessed the roles of involved miRNAs during the osteogenic differentiation. We obtained and cultured human adipose-derived stems cells from donors who underwent elective liposuction or other abdominal surgery at our institution. miRNA expression profiles pre- and post-osteogenic induction were obtained using microarray essay, and differently expressed miRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The expression of osteogenic proteins was detected using an enzyme-linked immunosorbent assay. Putative targets of the miRNAs were predicted using online software MiRanda, TargetScan, and miRBase. Eight miRNAs were found differently expressed pre- and post-osteogenic induction, among which four miRNAs (miR-17, miR-20a, miR-20b, and miR-106a) were up-regulated and four miRNAs (miR-31, miR-125a-5p, miR-125b, and miR-193a) were down-regulated. qRT-PCR analysis further confirmed the results. Predicted target genes of the differentially expressed miRNAs based on the overlap from three public prediction algorithms: MiRanda, TargetScan, and miRBase Target have the known functions of regulating stem cell osteogenic differentiation, self-renewal, signal transduction, and cell cycle control. We identified a group of miRNAs that may play important roles in regulating hADSC cell differentiation toward an osteoblast lineage. Further study of these miRNAs may elucidate the mechanism of hADSC differentiation into adipose tissue, and thus provide basis for tissue engineering.  相似文献   

14.
Alveolar type II (AT2) epithelial cells have important functions including the production of surfactant and regeneration of lost alveolar type I epithelial cells. The ability of in vitro production of AT2 cells would offer new therapeutic options in treating pulmonary injuries and disorders including genetically based surfactant deficiencies. Aiming at the generation of AT2-like cells, the differentiation of murine embryonic stem cells (mESCs) toward mesendodermal progenitors (MEPs) was optimized using a "Brachyury-eGFP-knock in" mESC line. eGFP expression demonstrated generation of up to 65% MEPs at day 4 after formation of embryoid bodies (EBs) under serum-free conditions. Plated EBs were further differentiated into AT2-like cells for a total of 25 days in serum-free media resulting in the expression of endodermal marker genes (FoxA2, Sox17, TTR, TTF-1) and of markers for distal lung epithelium (surfactant proteins (SP-) A, B, C, and D, CCSP, aquaporin 5). Notably, expression of SP-C as the only known AT2 cell specific marker could be detected after serum-induction as well as under serum-free conditions. Cytoplasmic localization of SP-C was demonstrated by confocal microscopy. The presence of AT2-like cells was confirmed by electron microscopy providing evidence for polarized cells with apical microvilli and lamellar body-like structures. Our results demonstrate the differentiation of AT2-like cells from mESCs after serum-induction and under serum-free conditions. The established serum-free differentiation protocol will facilitate the identification of key differentiation factors leading to a more specific and effective generation of AT2-like cells from ESCs.  相似文献   

15.
16.
Members of the transforming growth factor‐β superfamily, including bone morphogenetic protein 4 (BMP‐4), have been implicated as regulators of neuronal and glial differentiation. To test for a possible role of BMP‐4 in early mammalian neural specification, we examined its effect on neurogenesis in aggregate cultures of mouse embryonic stem (ES) cells. Compared to control aggregates, in which up to 20% of the cells acquired immunoreactivity for the neuron‐specific antibody TuJ1, aggregates maintained for 8 days in serum‐free medium containing BMP‐4 generated 5‐ to 10‐fold fewer neurons. The action of BMP‐4 was dose dependent and restricted to the fifth through eighth day in suspension. In addition to the reduction in neurons, we observed that ES cell cultures exposed to BMP‐4 contained fewer cells that were immunoreactive for glial fibrillary acidic protein or the HNK‐1 neural antigen. Furthermore, under phase contrast, cultures prepared from BMP‐4–treated aggregates contained a significant proportion of nonneuronal cells with a characteristic flat, elongated morphology. These cells were immunoreactive for antibodies to the intermediate filament protein vimentin; they were rare or absent in control cultures. Treatment with BMP‐4 enhanced the expression of the early mesodermal genes brachyury and tbx6 but had relatively little effect on total cell number or cell death. Coapplication of the BMP‐4 antagonist noggin counteracted the effect of exogenous BMP‐4, but noggin alone had no effect on neuralization in either the absence or presence of retinoids. Collectively, our results suggest that BMP‐4 can overcome the neuralizing action of retinoic acid to enhance mesodermal differentiation of murine ES cells. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 271–287, 1999  相似文献   

17.
18.

Background  

Pooled human embryonic stem cells (hESC) cell lines were profiled to obtain a comprehensive list of genes common to undifferentiated human embryonic stem cells.  相似文献   

19.
20.
胚胎干细胞向造血系统的分化   总被引:2,自引:0,他引:2  
胚胎干细胞是指从囊胚期的内细胞团中分离出来的尚未分化的胚胎细胞,可分化形成各种组织类型。在合适的条件下,胚胎干细胞可发育成造血干细胞及各类成熟血细胞,为造血干细胞移植及血细胞输注开辟了新的来源,同时也为造血发生及造血调控研究提供了有效可靠的模型。本文将综述ES细胞向造血系统分化的诱导条件、调控机制及应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号