首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

To analyze the p42.3 gene expression in gastric cancer (GC) cell, find the relationship between protein structure and function, establish the regulatory network of p42.3 protein molecule and then to obtain the optimal regulatory pathway.

Methods

The expression of p42.3 gene was analyzed by RT-PCR, Western Blot and other biotechnologies. The relationship between the spatial conformation of p42.3 protein molecule and its function was analyzed using bioinformatics, MATLAB and related knowledge about protein structure and function. Furthermore, based on similarity algorithm of spatial layered spherical coordinate, we compared p42.3 molecule with several similar structured proteins which are known for the function, screened the characteristic nodes related to tumorigenesis and development, and established the multi variable relational model between p42.3 protein expression, cell cycle regulation and biological characteristics in the level of molecular regulatory networks. Finally, the optimal regulatory network was found by using Bayesian network.

Results

(1) The expression amount of p42.3 in G1 and M phase was higher than that in S and G2 phase; (2) The space coordinate systems of different structural domains of p42.3 protein were established in Matlab7.0 software; (3) The optimal pathway of p42.3 gene in protein regulatory network in gastric cancer is Ras protein, Raf-1 protein, MEK, MAPK kinase, MAPK, tubulin, spindle protein, centromere protein and tumor.

Conclusion

It is of vital significance for mechanism research to find out the action pathway of p42.3 in protein regulatory network, since p42.3 protein plays an important role in the generation and development of GC.
  相似文献   

2.
Accumulating evidence has shown that miRNAs are aberrantly expressed in human gastric cancer and crucial to tumorigenesis. Herein, we identified the role of miR-148a in gastric cell proliferation. miR-148a knockdown inhibited cell proliferation in gastric cancer cell lines. Conversely, miR-148a overexpression promoted cell proliferation and cell cycle progression. p27, a key inhibitor of cell cycle, was verified as the target of miR-148a, indicating miR-148a might downregulate p27 expression to promote gastric cell proliferation. Moreover, we confirmed that miR-148a expression was frequently and dramatically downregulated in human advanced gastric cancer tissues, and observed a good inverse correlation between miR-148a and p27 expression in tumor samples. Thus, our results demonstrated that miR-148a downregulation might exert some sort of antagonistic function in cell proliferation, rather than promote cell proliferation in gastric cancer.  相似文献   

3.
4.
In spite of the achievement in treatment, the gastric cancer (GC) mortality still remains high. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play a crucial part in tumor progression. In this study, we explored the expression and function of microRNA-501-5p (miR-501-5p) in GC cell lines. Quantitative real-time polymerase chain reaction assay results suggested that miR-501-5p was significantly upregulated in GC tissues and cell lines. And, the Cell Counting Kit-8 colony formation and cell migration assay results showed that the downregulation of miR-501-5p decreased GC cell proliferation and migration. Besides that, we found that GC cell cycle was arrested in G2 phase and cell apoptosis rate was increased by silencing the expression of miR-501-5p in GC cell lines using the flow cytometry. We also found that miR-501-5p could directly target lysophosphatidic acid receptor 1 (LPAR1) and negatively regulate LPAR1 expression in GC cell lines by performing dual-luciferase reporter gene assay and Western blot analysis. And, LPAR1 was significantly downregulated in GC tissues and inversely correlated with miR-501-5p expression. Furthermore, LPAR1 downregulation promoted cell proliferation and migration, which were attenuated by cotransfection of miR-501-5p inhibitor in GC cells. In conclusion, miR-501-5p can promote GC cell proliferation and migration by targeting and downregulating LPAR1. miR-501-5p/LPAR1 may become a potential therapeutic target for GC treatment.  相似文献   

5.
Both miRNAs and nitric oxide (NO) play important roles in colonic inflammation and tumorigenesis. Resistance of colonic epithelial cells to apoptosis may contribute to tumor development. We hypothesized that some miRNAs could increase the resistance of colonic cancer cells to nitric oxide-induced apoptotic cell death. Here we show that NO induced apoptosis and stimulated expression of some miRNAs. Loss of p53 not only blocked NO-induced apoptosis but also dramatically inhibited the expression of NO-related miRNAs, such as miR-34, miR-203, and miR-1301. In addition, blockage of p53-dependent miRNAs significantly reduced NO-induced apoptosis. Furthermore, forced expression of these miRNAs rendered HT-29 cells, which are resistant to apoptosis with mutant p53, more sensitive to NO-induced apoptotic cell death. Most interestingly, in a colitis-associated colon cancer mouse model, the level of miRNAs dropped significantly, accompanied by downregulation of p21, which is a key target gene of p53. In human colorectal cancer samples, the expression of miR-34 significantly correlated with the level of inducible nitric oxide synthase (iNOS). We contend that increased NO production may select cells with low levels of p53-dependent miRNAs which contributes to human colonic carcinogenesis and tumor progression.  相似文献   

6.
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.  相似文献   

7.
8.
9.

Background

While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia.

Methodology/Principal Findings

A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue.

Conclusions/Significance

This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide.  相似文献   

10.
The aim of this study is to investigate the regulatory mechanism of circPDSS1/miR-186-5p/NEK2 axis on the viability and proliferation in gastric cancer (GC) cell line. Differentially expressed circRNAs, miRNAs, and mRNAs in GC tissues and paracarcinoma tissues were analyzed using gene chips GSE83521, GSE89143, and GSE93415. Then, the expression of circPDSS1, miR-186-5p, and NEK2 was analyzed via quantitative real-time polymerase chain reaction (qRT-PCR). Survival analysis was adopted to explore the association between the circPDSS1 expression and the prognosis of GC. The effect of circPDSS1 on GC cell cycle and apoptosis was verified with the flow cytometry. Targeting relationships among circPDSS1, miR-186-5p, and NEK2 were predicted via bioinformatics analysis and demonstrated by the dual-luciferase reporter assay. Our results showed that circPDSS1 and NEK2 were high-expressed whereas miR-186-5p was low-expressed in GC tissues and cells. CircPDSS1 promoted GC cell cycle and inhibited apoptosis by sponging miR-186-5p, while miR-186-5p inhibited cell cycle and promoted apoptosis by targeting NEK2. Thus, circPDSS1 acts as a tumor promoter by regulating miR-186-5p and NEK2, which could be a potential biomarker and therapeutic target for the management of GC.  相似文献   

11.
目的研究胃癌中表达失调的miRNA及其生物学功能,从而进一步阐明miRNA在胃癌发生中的分子机制。方法将总RNA加ploy(A)尾后进行反转录PCR扩增特异miRNA,使用QuantityOne软件进行定量分析,计算每对样本胃癌与癌旁组织比值(T/NRatio),使用SAM软件进行统计分析。MTT法检测miR-21和miR-17-5p对胃癌细胞系生长的影响。结果在8对胃癌及癌旁组织样本中对237个miRNA进行了表达谱分析。对于检测到表达的161个miRNA,使用SAM软件进行统计分析,确认22个在胃癌中表达上调,2个在胃癌中表达下调(FDR=0.0963)。进一步通过生长抑制试验证实在胃癌组织中表达异常增高的miR-21和miR-17-5p对胃癌细胞的生长有明显的促进作用。结论这些在胃癌中异常表达的miRNAs具有成为新一代胃癌标记物的潜力,能够为胃癌的精确诊断分型提供依据,同时针对这些靶点可以开发新的核酸治疗技术,通过抑制或增强其功能来达到治疗胃癌的目的。  相似文献   

12.
《Genomics》2022,114(1):351-360
Circular RNA (circRNA) is a non-coding RNA molecule that lacks polyadenylated tails and is highly stable, abundant, and conserved in human cells. CircRNAs can serve as a competing endogenous RNA (ceRNA) to sponge microRNAs (miRNA) and block their effects on target mRNA expression. CircRNAs also have possible relevance to cancer and therefore may be considered as ideal biomarkers for monitoring cancer progression. Of the about 300,000 predicted human circRNAs, only a few have validated biological functions related to cancer. To better understand the ceRNA role of circRNAs in colorectal cancer (CRC), we performed genome-wide circRNA-based RNA-sequencing (RNA-Seq) on nine CRC tumor samples and their paired histologically normal adjacent tissue samples. By profiling the mRNA expression in the same patients, we further explored the expression correlation between circRNAs and mRNAs generated from the same parental gene. Focusing on the concordant differential expression between circRNAs and mRNAs, we substantially reduced the regulatory noise. In total, we identified 694 circRNA-mRNA pairs that were consistently up or downregulated between tumor and normal tissues. These 694 circRNA-mRNA pairs are from 182 protein-coding genes associated with hormone responses and chemotaxis. Of these 182 genes, 43 are downstream targets of three highly conserved miRNAs (miR-410-3p, miR-135a, and miR-30a). Interestingly, these 43 genes are highly mutated in another cohort from eight independent CRC studies, which have significant effects on patient survival time. Focusing on miR-410-3p and its target oncogene MET, we experimentally validated the ceRNA regulatory motif of circMET. Notably, circMET is substantially upregulated in CRC cell lines and could promote cell proliferation and growth. By confirming the regulatory relationship between miR-410-3p and circMET, we propose a new mechanism for the observed sustained activation of MET in CRC. In conclusion, our work identifies a novel regulatory role of circMET and provides a potential diagnostic biomarker for CRC.  相似文献   

13.
14.
MicroRNAs (miRNAs) are a type of small non-coding RNAs that are often play important roles in carcinogenesis, but the carcinogenic mechanism of miRNAs is still unclear. This study will investigate the function and the mechanism of miR-638 in carcinoma (GC). The expression of miR-638 in GC and the DNA copy number of miR- 638 were detected by real-time PCR. The effect of miR-638 on cell proliferation was measured by counting kit-8 assay. Different assays, including bioinformatics algorithms (TargetScan and miRanda), luciferase report assay and Western blotting, were used to identify the target gene of miR-638 in GC. The expression of miR-638 target gene in clinical CRC tissues was also validated by immunohistochemical assay. From this research, we found that miR-638 was downregulated in GC tissues compared with corresponding noncancerous tissues (NCTs), and theDNAcopy numberof miR-638waslower in GC than NCTs, which may induce the corresponding downregulation of miR-638 in GC. Ectopic expression of miR-638 inhibited GC cell growth in vitro. Subsequently, we identified that PLD1 is the target gene of miR-638 in GC, and silencing PLD1 expression phenocopied the inhibitory effect of miR-638 on GC cell proliferation. Furthermore, we observed that PLD1 was overexpressed in GC tissues, and high expression of PLD1 in GC predicted poor overall survival. In summary, we revealed that miR- 638 functions as a tumor suppressor in GC through inhibiting PLD1.  相似文献   

15.
An increasing body of evidence indicates that miR-149 can both suppress and promote tumor growth depending on the tumor type. However, the role of miR-149 in the progression of gastric cancer (GC) remains unknown. Here we report that miR-149 is a tumor suppressor in human gastric cancer. miR-149 expression is decreased in GC cell lines and clinical specimens in comparison to normal gastric epithelial cell and tissues, respectively. The expression levels of miR-149 also correlate with the differentiation degree of GC cells and tissues. Moreover, ectopic expression of miR-149 in gastric cancer cells inhibits proliferation and cell cycle progression by down-regulating ZBTB2, a potent repressor of the ARF-HDM2-p53-p21 pathway, with a potential binding site for miR-149 in its mRNA''s 3′UTR. It is also found that ZBTB2 expression increases in GC cells and tissues compared to normal gastric epithelial cell and tissues, respectively. Silencing of ZBTB2 leads to suppression of cell growth and cell cycle arrest in G0/G1 phase, indicating that ZBTB2 may act as an oncogene in GC. Furthermore, transfection of miR-149 mimics into gastric cancer cells induces down-regulation of ZBTB2 and HDM2, and up-regulation of ARF, p53, and p21 compared to the controls. In summary, our data suggest that miR-149 functions as a tumor suppressor in human gastric cancer by, at least partially through, targeting ZBTB2.  相似文献   

16.
Kong G  Zhang J  Zhang S  Shan C  Ye L  Zhang X 《PloS one》2011,6(5):e19518
Hepatitis B virus X protein (HBx) plays important roles in the development of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) contribute to cancer development by acting as oncogenes or tumor suppressors. Previously, we reported that HBx was able to promote the migration of hepatoma HepG2 cells. However, the regulation of miRNAs in the development of HBV-related HCC is poorly understood. In the present study, we reported that miR-29a was a novel regulator of migration of hepatoma cells mediated by HBx. Our data showed that the expression of miR-29a was dramatically increased in p21-HBx transgenic mice, HBx-transfected hepatoma HepG2-X (or H7402-X) cells and HepG2.2.15 cells that constitutively replicate HBV. However, our data showed that miR-29a was upregulated in 4 of the 11 clinical HCC samples. We found that the overexpression of miR-29a promoted the migration of HepG2 cells, while a specific miR-29a inhibitor could partially abolish the enhanced migration of HepG2-X cells. Moreover, we identified PTEN was one of the target genes of miR-29a in HepG2 cells. The deletion of the miR-29a-binding site was able to abolish the role of miR-29a in suppression of luciferase activity of the PTEN 3'UTR reporter. Meanwhile, the overexpression of PTEN was able to reverse the promoted migration of HepG2 cells mediated by miR-29a. Moreover, our data showed that the modulation of Akt phosphorylation, a downstream factor of PTEN, was involved in the cell migration enhanced by miR-29a, suggesting that miR-29a is responsible for the cell migration through its target gene PTEN. Thus, we conclude that miR-29a is involved in the regulation of migration of hepatoma cells mediated by HBx through PTEN in cell culture model.  相似文献   

17.
microRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by targeting mRNAs, inhibiting the expression of the associated proteins. Although a role for aberrant miRNA expression in cancer has been postulated, the pathophysiologic role and relevance of aberrantly expressed miRNAs in tumor biology has not been established. We evaluated the expression pattern of miRNAs in human breast cancer cells by qPCR, finding out an up-regulated miRNA miR-29b and studying its biological effect by migration assay. We defined a target gene PTEN by bioinformatics approach and western blot. In breast cancer cell line MDA-MB-231 cell, which migrate faster than MCF-7, we observed that miR-29b was highly over-expressed. Inhibition of miR-29b in cultured cells increased the expression of the phosphatase and tensin homolog (PTEN) tumor suppressor, promoting apoptosis, decreasing migration, and decreasing invasion. In contrast, enhanced miR-29b expression by transfection with pre-miR-29b decreased the expression of PTEN and impaired apoptosis, increasing tumor cell migration and invasion. Moreover, PTEN was shown to be a direct target of miR-29b and was also shown to contribute to the miR-29b-mediated effects on cell invasion. Modulation of miR-29b altered the role of PTEN involved in cell migration and invasion. Aberrant expression of miR-29b, which modulates PTEN expression, can contribute to migration, invasion, and anti-apoptosis.  相似文献   

18.
19.
20.
Dysregulated long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play key roles in the development of human cancers. The lncRNA plasmacytoma variant translocation 1 (PVT1) is reported to be an oncogene in a variety of cancers. However, the roles of PVT1-5 and its related miRNAs in lung cancer are poorly understood. In this study, we found that PVT1-5 expression was significantly increased in lung cancer tissues and cell lines. By using biotin-labeled lncRNA-PVT1-5 probe for miRNA in vivo precipitation (miRIP) in lung cancer cells and dual-luciferase reporterassays, we identified that miR-126 was associated with lncRNA-PVT1-5. Furthermore, knockdown of lncRNA-PVT1-5 in cells could down-regulate the expression of SLC7A5, the target of oncogenic miR-126, resulting in the cell proliferation. Conversely, inhibiting the expression of miR-126 markedly increased the expression of SLC7A5 and alleviated cell proliferation inhibition. Thus, our results indicated that lncRNA-PVT1-5 may function as a competing endogenous RNA (ceRNA) for miR-126 to promote cell proliferation by regulating the miR-126/SLC7A5 pathway, suggesting that lncRNA-PVT1-5 plays a crucial role in lung cancer progression and lncRNA-PVT1-5/miR-126/SLC7A5 regulatory network may shed light on tumorigenesis in lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号