首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently demonstrated that a set of five functional muscle synergies were sufficient to characterize both hindlimb muscle activity and active forces during automatic postural responses in cats standing at multiple postural configurations. This characterization depended critically upon the assumption that the endpoint force vector (synergy force vector) produced by the activation of each muscle synergy rotated with the limb axis as the hindlimb posture varied in the sagittal plane. Here, we used a detailed, 3D static model of the hindlimb to confirm that this assumption is biomechanically plausible: as we varied the model posture, simulated synergy force vectors rotated monotonically with the limb axis in the parasagittal plane (r2=0.94+/-0.08). We then tested whether a neural strategy of using these five functional muscle synergies provides the same force-generating capability as controlling each of the 31 muscles individually. We compared feasible force sets (FFSs) from the model with and without a muscle synergy organization. FFS volumes were significantly reduced with the muscle synergy organization (F=1556.01, p<0.01), and as posture varied, the synergy-limited FFSs changed in shape, consistent with changes in experimentally measured active forces. In contrast, nominal FFS shapes were invariant with posture, reinforcing prior findings that postural forces cannot be predicted by hindlimb biomechanics alone. We propose that an internal model for postural force generation may coordinate functional muscle synergies that are invariant in intrinsic limb coordinates, and this reduced-dimension control scheme reduces the set of forces available for postural control.  相似文献   

2.
This paper introduces the notion of a reactionless synergy: a postural variation for a specific motion pattern/strategy, whereby the movements of the segments do not alter the force/moment balance at the feet. Given an optimal initial posture in terms of stability, a reactionless synergy can ensure optimality throughout the entire movement. Reactionless synergies are derived via a dynamical model wherein the feet are regarded to be unfixed. Though in contrast with the conventional fixed-feet models, this approach has the advantage of exhibiting the reactions at the feet explicitly. The dynamical model also facilitates a joint-space decomposition scheme yielding two motion components: the reactionless synergy and an orthogonal complement responsible for the dynamical coupling between the feet and the support. Since the reactionless synergy provides the basis (a feedforward control component) for optimal balance control, it may play an important role when evaluating balance abnormalities or when assessing optimality in balance control. We show how to apply the proposed method for analysis of motion capture data obtained from three voluntary movement patterns in the sagittal plane: squat, sway, and forward bend.  相似文献   

3.
BackgroundPostural instability is one of most disabling motor symptoms in Parkinson’s disease. Indices of multi-muscle synergies are new measurements of postural stability.ObjectivesWe explored the effects of dopamine-replacement drugs on multi-muscle synergies stabilizing center of pressure coordinate and their adjustments prior to a self-triggered perturbation in patients with Parkinson’s disease. We hypothesized that both synergy indices and synergy adjustments would be improved on dopaminergic drugs.MethodsPatients at Hoehn-Yahr stages II and III performed whole-body tasks both off- and on-drugs while standing. Muscle modes were identified as factors in the muscle activation space. Synergy indices stabilizing center of pressure in the anterior-posterior direction were quantified in the muscle mode space during a load-release task.ResultsDopamine-replacement drugs led to more consistent organization of muscles in stable groups (muscle modes). On-drugs patients showed larger indices of synergies and anticipatory synergy adjustments. In contrast, no medication effects were seen on anticipatory postural adjustments or other performance indices.ConclusionsDopamine-replacement drugs lead to significant changes in characteristics of multi-muscle synergies in Parkinson’s disease. Studies of synergies may provide a biomarker sensitive to problems with postural stability and agility and to efficacy of dopamine-replacement therapy.  相似文献   

4.
To examine the muscle synergies of multi-directional postural control, we calculated the target-directed variance fraction (η) and net action direction of each muscle using the electromyogram-weighted averaging (EWA) method. Subjects stood barefoot on a force platform and maintained their posture by producing a center of pressure (COP) in twelve target directions. Surface electromyograms were recorded from 6 right-sided muscles: tibialis anterior (TA), soleus (SOL), lateral gastrocnemius (LG), medial gastrocnemius (MG), fibularis longus (FL), and gluteus medius (GM). η was calculated from COP with duration of 20-s, during which the COP was relatively constant. The EWA method was applied to the EMG and the two COP components to estimate the net action direction of each muscle. The results showed that η values in all directions did not cross the 0.8 threshold. This suggests that human postural control is achieved by synergistic co-activation. The EWA revealed that the net action directions of TA, SOL, LG, MG, and GM were 277.6°, 71.1°, 87.7°, 94.0°, and 2.2°, respectively. This suggests that postural maintenance by muscle synergy can be attributed to the relevant muscles having various action directions. These results demonstrate that muscle synergies can be investigated using COP fluctuations.  相似文献   

5.
Drug synergy allows a therapeutic effect to be achieved with lower doses of component drugs. Drug synergy can result when drugs target the products of genes that act in parallel pathways (‘specific synergy’). Such cases of drug synergy should tend to correspond to synergistic genetic interaction between the corresponding target genes. Alternatively, ‘promiscuous synergy’ can arise when one drug non‐specifically increases the effects of many other drugs, for example, by increased bioavailability. To assess the relative abundance of these drug synergy types, we examined 200 pairs of antifungal drugs in S. cerevisiae. We found 38 antifungal synergies, 37 of which were novel. While 14 cases of drug synergy corresponded to genetic interaction, 92% of the synergies we discovered involved only six frequently synergistic drugs. Although promiscuity of four drugs can be explained under the bioavailability model, the promiscuity of Tacrolimus and Pentamidine was completely unexpected. While many drug synergies correspond to genetic interactions, the majority of drug synergies appear to result from non‐specific promiscuous synergy.  相似文献   

6.
This study investigated synergistic actions of hand–pen contact forces during circle drawing tasks in three-dimensional (3D) space. Twenty-four right-handed participants drew thirty concentric circles in the counterclockwise (CCW) and clockwise (CW) directions. Three-dimensional forces acting on an instrumented pen as well as 3D linear and angular positions of the pen were recorded. These contact forces were then transformed into the 3D radial, tangential, and normal force components specific to circle drawing. Uncontrolled manifold (UCM) analysis was employed to calculate the magnitude of the hand–pen contact force synergy. Three hypotheses were tested. First, hand–pen contact force synergies during circle drawing are dependent on the angular position of the pen tip. Second, hand–pen contact force synergies are dependent on force components in circle drawing. Third, hand–pen contact force synergies are greater in CCW direction than CW direction. The results showed that the strength of the hand–pen contact force synergy increased during the initial phase of circle drawing and decreased during the final phase. The synergy strength was greater for the radial and tangential components as compared to the normal component. Also, the circle drawing in CW direction was associated with greater hand–pen contact force synergy than the CCW direction. The results of this study suggest that the central nervous system (CNS) prioritizes hand–pen contact force synergies for the force components (i.e., radial and tangential) that are critical for circle drawing. The CNS modulates hand–pen contact force synergies for preparation and conclusion of circle drawing, respectively.  相似文献   

7.
Despite the recent influx of increasingly dexterous prostheses, there remains a lack of sufficiently intuitive control methods to fully utilize this dexterity. As a solution to this problem, a control framework is proposed which allows the control of an arbitrary number of Degrees of Freedom (DOF) through a single electromyogram (EMG) control input. Initially, the joint motions of nine test subjects were recorded while grasping and catching a cylinder. Inherent differences emerged depending upon whether the cylinder was grasped or caught. These data were used to form a distinct synergy for each task, described as the families of parametric functions of time that share a mutual time vector. These two Temporally Synchronized Synergies (TSS) were derived to reflect the task dependent control strategies adopted by the initial participants. These synergies were then mapped to a dexterous artificial hand that was subsequently controlled by two subjects with transradial amputations. The EMG signals from these subjects were used to replace the time vector shared by the synergies, enabling the subjects to perform both tasks with a dexterous artificial hand using only a single EMG input. After a ten minute training period, the subjects learned to use the dexterous artificial hand to grasp and catch the cylinder with 100.0% and 65.0% average success rates, respectively.  相似文献   

8.
Motor synergies have been investigated since the 1980s as a simplifying representation of motor control by the nervous system. This way of representing finger positional data is in particular useful to represent the kinematics of the human hand. Whereas, so far, the focus has been on kinematic synergies, that is common patterns in the motion of the hand and fingers, we hereby also investigate their force aspects, evaluated through surface electromyography (sEMG). We especially show that force-related motor synergies exist, i.e. that muscle activation during grasping, as described by the sEMG signal, can be grouped synergistically; that these synergies are largely comparable to one another across human subjects notwithstanding the disturbances and inaccuracies typical of sEMG; and that they are physiologically feasible representations of muscular activity during grasping. Potential applications of this work include force control of mechanical hands, especially when many degrees of freedom must be simultaneously controlled.  相似文献   

9.
Muscle synergies have been investigated during different types of human movement using nonnegative matrix factorization. However, there are not any reports available on the reliability of the method. To evaluate between-day reliability, 21 subjects performed bench press, in two test sessions separated by approximately 7 days. The movement consisted of 3 sets of 8 repetitions at 60% of the three repetition maximum in bench press. Muscle synergies were extracted from electromyography data of 13 muscles, using nonnegative matrix factorization. To evaluate between-day reliability, we performed a cross-correlation analysis and a cross-validation analysis, in which the synergy components extracted in the first test session were recomputed, using the fixed synergy components from the second test session. Two muscle synergies accounted for >90% of the total variance, and reflected the concentric and eccentric phase, respectively. The cross-correlation values were strong to very strong (r-values between 0.58 and 0.89), while the cross-validation values ranged from substantial to almost perfect (ICC3, 1 values between 0.70 and 0.95). The present findings revealed that the same general structure of the muscle synergies was present across days and the extraction of muscle synergies is thus deemed reliable.  相似文献   

10.
ObjectiveExternally applied abduction and rotational loads are major contributors to the knee joint injury mechanism; yet, how muscles work together to stabilize the knee against these loads remains unclear. Our study sought to evaluate lower limb functional muscle synergies in healthy young adults such that muscle activation can be directly related to internal knee joint moments.MethodsConcatenated non-negative matrix factorization extracted muscle and moment synergies of 22 participants from electromyographic signals and joint moments elicited during a weight-bearing force matching protocol.ResultsTwo synergy sets were extracted: Set 1 included four synergies, each corresponding to a general anterior, posterior, medial, or lateral force direction. Frontal and transverse moments were coupled during medial and lateral force directions. Set 2 included six synergies, each corresponding to a moment type (extension/flexion, ab/adduction, internal/external rotation). Hamstrings and quadriceps dominated synergies associated with respective flexion and extension moments while quadriceps-hamstring co-activation was associated with knee abduction. Rotation moments were associated with notable contributions from hamstrings, quadriceps, gastrocnemius, and hip ab/adductors, corresponding to a general co-activation muscle synergy.ConclusionOur results highlight the importance of muscular co-activation of all muscles crossing the knee to support it during injury-inducing loading conditions such as externally applied knee abduction and rotation. Functional muscle synergies can provide new insight into the relationship between neuromuscular control and knee joint stability by directly associating biomechanical variables to muscle activation.  相似文献   

11.
By‐product synergy is a growing practice worldwide. It consists in the maximization of resources utilization with the replacement of raw materials by by‐products as inputs for industrial processes. In order to support decision making in such strategic projects, appropriate tools must be developed. This article presents the results of a research project, which includes the development of a multiobjective mathematical programming model for the optimization of by‐product flows, synergy configurations, and investment decisions in eco‐industrial networks. This model is evaluated using data related to the Kalundborg industrial symbiosis (IS) in order to illustrate its utilization, as well as to assess, in a retrospective manner, the behavior of the companies involved with respect to both economic and environmental benefits of synergies. The experiments also illustrate the influence of the municipality on synergy implementation and how a scenario‐based approach can be used to anticipate raw material price increase. The results are generally coherent with the actual timing of synergy initializations. Further, the considerable effect of water price on the length of investments’ payback period illustrates the impact of policies and regulations on IS.  相似文献   

12.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.  相似文献   

13.
Unilateral light fingertip touch of a stationary object has a significant stabilizing effect on postural sway during stance. The purpose of this study was to find out if this effect is enhanced by bilateral light touch of parallel stationary objects. The postural sway of 54 healthy subjects was tested in four stance conditions: no touch; unilateral left light touch of the left handle of a walker; unilateral right light touch of the right handle of the same walker; and bilateral light touch of the two handles. During testing, subjects stood blindfolded on two foam pads placed on the left and right force plates of the Tetrax balance system. Testing in each condition lasted 45 s and was executed twice in a random order. As expected, postural sway was significantly reduced by unilateral left or right light fingertip touch. It was significantly further decreased by bilateral light touch. In addition, light touch conditions were associated with a reduction in pressure fluctuations between the heel and forefoot of the same foot as well as those of the contralateral foot, with a concomitant increase in weight shift fluctuations between the two feet. The decrease in postural sway with bilateral light touch suggests cortical modulation of the bilateral touch inputs, with enhancement of the stabilizing response.  相似文献   

14.
We describe a model of feed-forward control of a redundant motor system and validate it using, as examples, tasks of multi-finger force production. The model assumes the existence of two input signals at an upper level of the control hierarchy, related and unrelated to a task variable. Knowledge of the Jacobian of the system is assumed at the level of generation of elemental variables (variables at the level of effectors). Variance at the level of elemental variables is considered as the sum of two components, related and unrelated to variability in the task variable. An index of stabilization of the task variable is similarly introduced as to how it was done in several studies using the framework of the uncontrolled manifold hypothesis. Several phenomena have been simulated including data point distributions corresponding to presence and absence of force-stabilizing synergies in two-finger tasks, changes in synergies with practice, and changes in synergy indices in preparation to a fast action. The model is discussed in comparison to other models of control of multi-element systems based on feedback processes. It shows that patterns of structured variability in the space of elemental variables can result from feed-forward processes. Relations of the model to the equilibrium-point hypothesis are also discussed.  相似文献   

15.
Unilateral light fingertip touch of a stationary object has a significant stabilizing effect on postural sway during stance. The purpose of this study was to find out if this effect is enhanced by bilateral light touch of parallel stationary objects. The postural sway of 54 healthy subjects was tested in four stance conditions: no touch; unilateral left light touch of the left handle of a walker; unilateral right light touch of the right handle of the same walker; and bilateral light touch of the two handles. During testing, subjects stood blindfolded on two foam pads placed on the left and right force plates of the Tetrax balance system. Testing in each condition lasted 45?s and was executed twice in a random order. As expected, postural sway was significantly reduced by unilateral left or right light fingertip touch. It was significantly further decreased by bilateral light touch. In addition, light touch conditions were associated with a reduction in pressure fluctuations between the heel and forefoot of the same foot as well as those of the contralateral foot, with a concomitant increase in weight shift fluctuations between the two feet. The decrease in postural sway with bilateral light touch suggests cortical modulation of the bilateral touch inputs, with enhancement of the stabilizing response.  相似文献   

16.
The purpose of this investigation was to document and quantify age-related differences in the coordination of fingers during a task that required production of an accurate time profile of the total moment of force by the four fingers of a hand. We hypothesized that elderly subjects would show a decreased ability to stabilize a time profile of the total moment of force, leading to larger indexes of moment variability compared with young subjects. The subjects followed a trapezoidal template on a computer screen by producing a time profile of the total moment of force while pressing down on force sensors with the four fingers of the right (dominant) hand. To quantify synergies, we used the framework of the uncontrolled manifold hypothesis. The elderly subjects produced larger total force, larger variance of both total force and total moment of force, and larger involvement of fingers that produced moment of force against the required moment direction (antagonist moment). This was particularly prominent during supination efforts. Young subjects showed covariation of commands to fingers across trials that stabilized the moment of total force (moment-stabilizing synergy), while elderly subjects failed to do so. Both subject groups showed similar indexes of covariation of commands to the fingers that stabilized the time profile of the total force. The lack of moment-stabilizing synergies may be causally related to the documented impairment of hand function with age.  相似文献   

17.
BackgroundPhysiological evidence suggests that the nervous system controls motion by using a low-dimensional synergy organization for muscle activation. Because the muscle activation produces joint torques, kinetic changes accompanying aging can be related to changes in muscle synergies.ObjectivesWe explored the effects of aging on muscle synergies underlying sit-to-stand tasks, and examined their relationships with kinetic characteristics.MethodsFour younger and three older adults performed the sit-to-stand task at two speeds. Subsequently, we extracted the muscle synergies used to perform these tasks. Hierarchical cluster analysis was used to classify these synergies. We also calculated kinetic variables to compare the groups.ResultsThree independent muscle synergies generally appeared in each subject. The spatial structure of these synergies was similar across age groups. The change in motion speed affected only the temporal structure of these synergies. However, subject-specific muscle synergies and kinetic variables existed.ConclusionsOur results suggest common muscle synergies underlying the sit-to-stand task in both young and elderly adults. People may actively change only the temporal structure of each muscle synergy. The precise subject-specific structuring of each muscle synergy may incorporate knowledge of the musculoskeletal kinetics.  相似文献   

18.
The realization of regional synergies in industrial areas with intensive minerals processing provides a significant avenue toward sustainable resource processing. This article provides an overview of past and current synergy developments in two of Australia's major heavy industrial regions, Kwinana (Western Australia) and Gladstone (Queensland), and includes a comparative review and assessment of the drivers, barriers, and trigger events for regional synergies initiatives in both areas. Kwinana and Gladstone compare favorably with well‐known international examples in terms of the current level and maturity of industry involvement and collaboration and the commitment to further explore regional resource synergies. Kwinana stands out with regard to the number, diversity, complexity, and maturity of existing synergies. Gladstone is remarkable with regard to unusually large geographic boundaries and high dominance of one industry sector. Many diverse regional synergy opportunities still appear to exist in both industrial regions (particularly in Kwinana), mostly in three broad areas: water, energy, and inorganic by‐product reuse. To enhance the further development of new regional synergies, the Centre for Sustainable Resource Processing (CSRP), a joint initiative of Australian minerals processing companies, research providers, and government agencies, has undertaken several collaborative projects. These include research to facilitate the process of identifying and evaluating potential synergy opportunities and assistance for the industries with feasibility studies and implementation of selected synergy projects in both regions. The article also reports on the progress to date from this CSRP research.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号