首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although retroviruses have been extensively studied for many years, basic questions about how retroviral infections are detected by the immune system and which innate pathways are required for the generation of immune responses remain unanswered. Defining these pathways and how they contribute to the anti-retroviral immune responses would assist in the development of more effective vaccines for retroviral pathogens such as HIV. We have investigated the roles played by CD11c+ dendritic cells (DCs) and by Toll-like receptor (TLR) signaling pathways in the generation of an anti-retroviral immune response against a mouse retroviral pathogen, Friend murine leukemia virus (F-MLV). Specific deletion of DCs during F-MLV infection caused a significant increase in viral titers at 14 days post-infection, indicating the importance of DCs in immune control of the infection. Similarly, Myd88 knockout mice failed to control F-MLV, and sustained high viral titers (107 foci/spleen) for several months after infection. Strikingly, both DC-depleted mice and Myd88 knockout mice exhibited only a partial reduction of CD8+ T cell responses, while the IgG antibody response to F-MLV was completely lost. Furthermore, passive transfer of immune serum from wild-type mice to Myd88 knockout mice rescued control of F-MLV. These results identify TLR signaling and CD11c+ DCs as playing critical roles in the humoral response to retroviruses.  相似文献   

2.
Arthralgia-associated alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), pose significant public health threats because of their ability to cause explosive outbreaks of debilitating arthralgia and myalgia in human populations. Although the host inflammatory response is known to contribute to the pathogenesis of alphavirus-induced arthritis and myositis, the role that Toll-like receptors (TLRs), which are major regulators of host antiviral and inflammatory responses, play in the pathogenesis of alphavirus-induced arthritis and myositis has not been extensively studied. Using a mouse model of RRV-induced myositis/arthritis, we found that myeloid differentiation primary response gene 88 (Myd88)-dependent TLR7 signaling is involved in protection from severe RRV-associated disease. Infections of Myd88- and TLR7-deficient mouse strains with RRV revealed that both Myd88 and TLR7 significantly contributed to protection from RRV-induced mortality, and both mouse strains exhibited more severe tissue damage than wild-type (WT) mice following RRV infection. While viral loads were unchanged in either Myd88 or TLR7 knockout mice compared to WT mice at early times postinfection, both Myd88 and TLR7 knockout mice exhibited higher viral loads than WT mice at late times postinfection. Furthermore, while high levels of RRV-specific antibody were produced in TLR7-deficient mice, this antibody had very little neutralizing activity and had lower affinity than WT antibody. Additionally, TLR7- and Myd88-deficient mice showed defects in germinal center activity, suggesting that TLR7-dependent signaling is critical for the development of protective antibody responses against RRV.  相似文献   

3.
Early events during retroviral infection play a critical role in determining the course of infection and pathogenesis, but the mechanisms that regulate this phase of infection are poorly understood. Toll-like receptor 7 (TLR7) is required for promoting germinal center reactions and virus-specific neutralizing antibodies at later time points postinfection, but TLR7''s role in early acute infection has not been determined. By infecting TLR7-deficient mice with a retroviral pathogen, Friend virus (FV), I determined that TLR7 potently inhibits retroviral replication during the first 5 days of infection and is required for rapid secretion of virus-specific IgM and interleukin-10 (IL-10) in response to infection. Although the IgM response was nonneutralizing, plasmas from wild-type mice but not TLR7-deficient mice inhibited FV replication when passively transferred to infected mice, suggesting an indirect mechanism of antibody function. Interestingly, IL-10 was secreted primarily by CD4 T cells, and IL-10-deficient mice also exhibited accelerated early virus spread, demonstrating that this response inhibits acute infection. Surprisingly, TLR7-deficient mice exhibited normal or elevated secretion of proinflammatory cytokines during acute infection, revealing the existence of a TLR7-independent retrovirus-sensing pathway that drives inflammatory cytokine secretion. Together, these results establish a previously unappreciated role for lymphocytes in mediating rapid TLR7-dependent inhibition of early retroviral infection through nonneutralizing IgM and IL-10.  相似文献   

4.
Hepatitis C virus (HCV) infection induces a wide range of chronic liver injuries; however, the mechanism through which HCV evades the immune surveillance system remains obscure. Blood dendritic cells (DCs) play a pivotal role in the recognition of viral infection and the induction of innate and adaptive immune responses. Several reports suggest that HCV infection induces the dysfunction of DCs in patients with chronic hepatitis C. Toll-like receptor (TLR) has been shown to play various roles in many viral infections; however, the involvement of HCV proteins in the TLR signaling pathway has not yet been precisely elucidated. In this study, we established mouse macrophage cell lines stably expressing HCV proteins and determined the effect of HCV proteins on the TLR signaling pathways. Immune cells expressing NS3, NS3/4A, NS4B, or NS5A were found to inhibit the activation of the TLR2, TLR4, TLR7, and TLR9 signaling pathways. Various genotypes of NS5A bound to MyD88, a major adaptor molecule in TLR, inhibited the recruitment of interleukin-1 receptor-associated kinase 1 to MyD88, and impaired cytokine production in response to TLR ligands. Amino acid residues 240 to 280, previously identified as the interferon sensitivity-determining region (ISDR) in NS5A, interacted with the death domain of MyD88, and the expression of a mutant NS5A lacking the ISDR partially restored cytokine production. These results suggest that the expression of HCV proteins modulates the TLR signaling pathway in immune cells.  相似文献   

5.
The innate immune system recognizes influenza A virus via TLR 7 or retinoic acid-inducible gene I in a cell-type specific manner in vitro, however, physiological function(s) of the MyD88- or interferon-beta promoter stimulator 1 (IPS-1)-dependent signaling pathways in antiviral responses in vivo remain unclear. In this study, we show that although either MyD88- or IPS-1-signaling pathway was sufficient to control initial antiviral responses to intranasal influenza A virus infection, mice lacking both pathways failed to show antiviral responses, resulting in increased viral load in the lung. By contrast, induction of B cells or CD4 T cells specific to the dominant hemagglutinin or nuclear protein Ags respectively, was strictly dependent on MyD88 signaling, but not IPS-1 signaling, whereas induction of nuclear protein Ag-specific CD8 T cells was not impaired in the absence of either MyD88 or IPS-1. Moreover, vaccination of TLR7- and MyD88-deficient mice with inactivated virus failed to confer protection against a lethal live virus challenge. These results strongly suggest that either the MyD88 or IPS-1 signaling pathway is sufficient for initial antiviral responses, whereas the protective adaptive immune responses to influenza A virus are governed by the TLR7-MyD88 pathway.  相似文献   

6.
We have previously shown that mice inoculated intranasally with a wild-type baculovirus (Autographa californica nuclear polyhedrosis virus [AcNPV]) are protected from a lethal challenge by influenza virus. However, the precise mechanism of induction of this protective immune response by the AcNPV treatment remained unclear. Here we show that AcNPV activates immune cells via the Toll-like receptor 9 (TLR9)/MyD88-dependent signaling pathway. The production of inflammatory cytokines was severely reduced in peritoneal macrophages (PECs) and splenic CD11c(+) dendritic cells (DCs) derived from mice deficient in MyD88 or TLR9 after cultivation with AcNPV. In contrast, a significant amount of alpha interferon (IFN-alpha) was still detectable in the PECs and DCs of these mice after stimulation with AcNPV, suggesting that a TLR9/MyD88-independent signaling pathway might also participate in the production of IFN-alpha by AcNPV. Since previous work showed that TLR9 ligands include bacterial DNA and certain oligonucleotides containing unmethylated CpG dinucleotides, we also examined the effect of baculoviral DNA on the induction of innate immunity. Transfection of the murine macrophage cell line RAW264.7 with baculoviral DNA resulted in the production of the inflammatory cytokine, while the removal of envelope glycoproteins from viral particles, UV irradiation of the virus, and pretreatment with purified baculovirus envelope proteins or endosomal maturation inhibitors diminished the induction of the immune response by AcNPV. Together, these results indicate that the internalization of viral DNA via membrane fusion mediated by the viral envelope glycoprotein, as well as endosomal maturation, which releases the viral genome into TLR9-expressing cellular compartments, is necessary for the induction of the innate immune response by AcNPV.  相似文献   

7.

Background

Pathogen recognition drives host defense towards viral infections. Specific groups rather than single members of the protein family of pattern recognition receptors (PRRs) such as membrane spanning Toll-like receptors (TLRs) and cytosolic helicases might mediate sensing of replication intermediates of a specific virus species. TLR7 mediates host sensing of retroviruses and could significantly influence retrovirus-specific antibody responses. However, the origin of efficient cell-mediated immunity towards retroviruses is unknown. Double-stranded RNA intermediates produced during retroviral replication are good candidates for immune stimulatory viral products. Thus, we considered TLR3 as primer of cell-mediated immunity against retroviruses in vivo.

Results

Infection of mice deficient in TLR3 (TLR3?/?) with Friend retrovirus (FV) complex revealed higher viral loads during acute retroviral infection compared to wild type mice. TLR3?/? mice exhibited significantly lower expression levels of type I interferons (IFNs) and IFN-stimulated genes like Pkr or Ifi44, as well as reduced numbers of activated myeloid dendritic cells (DCs) (CD86+ and MHC-II+). DCs generated from FV-infected TLR3?/? mice were less capable of priming virus-specific CD8+ T cell proliferation. Moreover, cytotoxicity of natural killer (NK) cells as well as CD8+ T cells were reduced in vitro and in vivo, respectively, in FV-infected TLR3-/- mice.

Conclusions

TLR3 mediates antiretroviral cytotoxic NK cell and CD8+ T cell activity in vivo. Our findings qualify TLR3 as target of immune therapy against retroviral infections.
  相似文献   

8.
9.
The immune system is tasked with defending against a myriad of microbial infections, and its response to a given infectious microbe may be strongly influenced by coinfection with another microbe. It was shown that infection of mice with lactate dehydrogenase-elevating virus (LDV) impairs early adaptive immune responses to Friend virus (FV) coinfection. To investigate the mechanism of this impairment, we examined LDV-induced innate immune responses and found LDV-specific induction of IFN-α and IFN-γ. LDV-induced IFN-α had little effect on FV infection or immune responses, but unexpectedly, LDV-induced IFN-γ production dampened Th1 adaptive immune responses and enhanced FV infection. Two distinct effects were identified. First, LDV-induced IFN-γ signaling indirectly modulated FV-specific CD8(+) T cell responses. Second, intrinsic IFN-γ signaling in B cells promoted polyclonal B cell activation and enhanced early FV infection, despite promotion of germinal center formation and neutralizing Ab production. Results from this model reveal that IFN-γ production can have detrimental effects on early adaptive immune responses and virus control.  相似文献   

10.
11.
Endotoxin-induced maturation of MyD88-deficient dendritic cells   总被引:24,自引:0,他引:24  
LPS, a major component of the cell wall of Gram-negative bacteria, can induce a variety of biological responses including cytokine production from macrophages, B cell proliferation, and endotoxin shock. All of them were completely abolished in MyD88-deficient mice, indicating the essential role of MyD88 in LPS signaling. However, MyD88-deficient cells still show activation of NF-kappaB and mitogen-activated protein kinase cascades, although the biological significance of this activation is not clear. In this study, we have examined the effects of LPS on dendritic cells (DCs) from wild-type and several mutant mice. LPS-induced cytokine production from DCs was dependent on MyD88. However, LPS could induce functional maturation of MyD88-deficient DCs, including up-regulation of costimulatory molecules and enhancement of APC activity. MyD88-deficient DCs could not mature in response to bacterial DNA, the ligand for Toll-like receptor (TLR)9, indicating that MyD88 is differentially required for TLR family signaling. MyD88-dependent and -independent pathways originate at the intracytoplasmic region of TLR4, because both cytokine induction and functional maturation were abolished in DCs from C3H/HeJ mice carrying the point mutation in the region. Finally, in vivo analysis revealed that MyD88-, but not TLR4-, deficient splenic CD11c(+) DCs could up-regulate their costimulatory molecule expression in response to LPS. Collectively, the present study provides the first evidence that the MyD88-independent pathway downstream of TLR4 can lead to functional DC maturation, which is critical for a link between innate and adaptive immunity.  相似文献   

12.
The ability to induce Ab responses to pathogens while maintaining the quiescence of autoreactive cells is an important aspect of immune tolerance. During activation of TLR4, dendritic cells (DCs) and macrophages (MFs) repress autoantibody production through their secretion of IL-6 and soluble CD40L (sCD40L). These soluble mediators selectively repress B cells chronically exposed to Ag, but not naive cells, suggesting a means to maintain tolerance during TLR4 stimulation, yet allow immunity. In this study, we identify TNF-α as a third repressive factor, which together with IL-6 and CD40L account for nearly all the repression conferred by DCs and MFs. Similar to IL-6 and sCD40L, TNF-α did not alter B cell proliferation or survival. Instead, it reduced the number of Ab-secreting cells. To address whether the soluble mediators secreted by DCs and MFs functioned in vivo, we generated mice lacking IL-6, CD40L, and TNF-α. Compared to wild-type mice, these mice showed prolonged anti-nuclear Ab responses following TLR4 stimulation. Furthermore, adoptive transfer of autoreactive B cells into chimeric IL-6(-/-) × CD40L(-/-) × TNF-α(-/-) mice showed that preplasma cells secreted autoantibodies independent of germinal center formation or extrafollicular foci. These data indicate that in the absence of genetic predisposition to autoimmunity, loss of endogenous IL-6, CD40L, and TNF-α promotes autoantibody secretion during TLR4 stimulation.  相似文献   

13.
Toll-like receptor 7 and Myd88 are required for antiretroviral antibody and germinal center responses, but whether somatic hypermutation and class-switch recombination are required for antiretroviral immunity has not been examined. Mice deficient in activation-induced cytidine deaminase (AID) resisted Friend virus infection, produced virus-neutralizing antibodies, and controlled viremia. Passive transfer demonstrated that immune IgM from AID-deficient mice contributes to Friend virus control in the presence of virus-specific CD4+ T cells.  相似文献   

14.
Polyinosinic:polycytidylic acid (poly(I:C)) is a ligand of toll-like receptor (TLR) 3 that has been used as an immunostimulant in humans and mice against viral diseases based on its ability to enhance innate and adapt immunity. Antiviral effect of poly(I:C) has also been observed in teleost, however, the underling mechanism is not clear. In this study, we investigated the potential and signaling mechanism of poly(I:C) as an antiviral agent in a model of Japanese flounder (Paralichthys olivaceus) infected with megalocytivirus. We found that poly(I:C) exhibited strong antiviral activity and enhanced activation of head kidney macrophages and peripheral blood leukocytes. In vivo studies showed that (i) TLR3 as well as MDA5 knockdown reduced poly(I:C)-mediated immune response and antiviral activity to significant extents; (ii) when Myd88 was overexpressed in flounder, poly(I:C)-mediated antiviral activity was significantly decreased; (iii) when Myd88 was inactivated, the antiviral effect of poly(I:C) was significantly increased. Cellular study showed that (i) the NF-κB activity induced by poly(I:C) was upregulated in Myd88-overexpressing cells and unaffected in Myd88-inactivated cells; (ii) Myd88 overexpression inhibited and upregulated the expression of poly(I:C)-induced antiviral genes and inflammatory genes respectively; (iii) Myd88 inactivation enhanced the expression of the antiviral genes induced by poly(I:C). Taken together, these results indicate that poly(I:C) is an immunostimulant with antiviral potential, and that the immune response of poly(I:C) requires TLR3 and MDA5 and is negatively regulated by Myd88 in a manner not involving NK-κB. These results provide insights to the working mechanism of poly(I:C), TLR3, and Myd88 in fish.  相似文献   

15.
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by a low platelet count and the production of anti-platelet antibodies. The majority of ITP patients have antibodies to platelet integrin αIIbβ3 (GPIIbIIIa) which can direct platelet phagocytosis by macrophages. One effective treatment for patients with ITP is intravenous immunoglobulin (IVIg) which rapidly reverses thrombocytopenia. The exact mechanism of IVIg action in human patients is unclear, although in mouse models of passive ITP, IVIg can rapidly increase platelet counts in the absence of adaptive immunity. Another antibody therapeutic that can similarly increase platelet counts independent of adaptive immunity are CD44 antibodies. Toll-like receptors (TLRs) are pattern recognition receptors which play a central role in helping direct the innate immune system. Dendritic cells, which are notable for their expression of TLRs, have been directly implicated in IVIg function as an initiator cell, while CD44 can associate with TLR2 and TLR4. We therefore questioned whether IVIg, or the therapeutic CD44 antibody KM114, mediate their ameliorative effects in a manner dependent upon normal TLR function. Here, we demonstrate that the TLR4 agonist LPS does not inhibit IVIg or KM114 amelioration of antibody-induced thrombocytopenia, and that these therapeutics do not ameliorate LPS-induced thrombocytopenia. IVIg was able to significantly ameliorate murine ITP in C3H/HeJ mice which have defective TLR4. All known murine TLRs except TLR3 utilize the Myd88 adapter protein to drive TLR signaling. Employing Myd88 deficient mice, we found that both IVIg and KM114 ameliorate murine ITP in Myd88 deficient mice to the same extent as normal mice. Thus both IVIg and anti-CD44 antibody can mediate their ameliorative effects in murine passive ITP independent of the Myd88 signaling pathway. These data help shed light on the mechanism of action of IVIg and KM114 in the amelioration of murine ITP.  相似文献   

16.
Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.  相似文献   

17.
The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-γ secreting CD8+ T cells specific for H-2Kb-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2−/−, Tlr4−/−, Tlr9−/ or Myd88−/− mice generated both specific cytotoxic responses and IFN-γ secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-γ+CD4+ cells was diminished in infected Myd88−/− mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-γ, TNF-α and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4−/− mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi.  相似文献   

18.
The E3 ubiquitin ligase Casitas B cell lymphoma-b (Cbl-b) plays a critical role in the development of autoimmunity and sets the threshold for T cell activation. In the absence of Cbl-b, T cells stimulated via the TCR respond similarly to those that have received a CD28-mediated costimulatory signal, suggesting that the absence of Cbl-b substitutes for CD28-mediated costimulation. In this study, we show that loss of Cbl-b restores Ig class switching and germinal center formation in Vav1 mutant mice in response to an in vivo viral challenge. Genetic inactivation of Cbl-b also rescues impaired antiviral IgG production in CD28-mutant mice. Moreover, loss of CD28 results in disorganization of follicular dendritic cell clusters, which is also rescued by the Cbl-b mutation. Intriguingly, despite restored antiviral in vivo immunity and follicular dendritic cell clusters, loss of Cbl-b did not rescue germinal center formation in CD28-deficient mice. Mechanistically, in vivo vesicular stomatitis virus-induced IL-4 and IFN-gamma production and up-regulation of the inducible costimulatory molecule ICOS were dependent on CD28, and could not be rescued by the loss of Cbl-b. These data provide genetic evidence that CD28-dependent in vivo immune responses and Ig class switching can be genetically uncoupled from germinal center formation and ICOS induction by Cbl-b-Vav1-regulated signaling pathways.  相似文献   

19.
IFN-gamma is a key cytokine controlling Brucella infection. One of its major function is the stimulation of Brucella-killing effector mechanisms, such as inducible NO synthase (iNOS)/NOS2 activity, in phagocytic cells. In this study, an attempt to identify the main cellular components of the immune response induced by Brucella melitensis in vivo is made. IFN-gamma and iNOS protein were analyzed intracellularly using flow cytometry in chronically infected mice. Although TCRbeta(+)CD4(+) cells were the predominant source of IFN-gamma in the spleen, we also identified CD11b(+)LY-6C(+)LY-6G(-)MHC-II(+) cells as the main iNOS-producing cells in the spleen and the peritoneal cavity. These cells appear similar to inflammatory dendritic cells recently described in the mouse model of Listeria monocytogenes infection and human psoriasis: the TNF/iNOS-producing dendritic cells. Using genetically deficient mice, we demonstrated that the induction of iNOS and IFN-gamma-producing cells due to Brucella infection required TLR4 and TLR9 stimulation coupled to Myd88-dependent signaling pathways. The unique role of MyD88 was confirmed by the lack of impact of Toll-IL-1R domain-containing adaptor inducing IFN-beta deficiency. The reduction of IFN-gamma(+) and iNOS(+) cell frequency observed in MyD88-, TLR4-, and TLR9-deficient mice correlated with a proportional lack of Brucella growth control. Taken together, our results provide new insight into how immune responses fight Brucella infection.  相似文献   

20.
Brucella abortus is a facultative intracellular bacterium that infects humans and domestic animals. The enhanced susceptibility to virulent B. abortus observed in MyD88 knockout (KO) mice led us to investigate the mechanisms involved in MyD88-dependent immune responses. First, we defined the role of MyD88 in dendritic cell (DC) maturation. In vitro as well as in vivo, B. abortus-exposed MyD88 KO DCs displayed a significant impairment on maturation as observed by expression of CD40, CD86, and MHC class II on CD11c+ cells. In addition, IL-12 and TNF-alpha production was totally abrogated in MyD88 KO DCs and macrophages. Furthermore, B. abortus-induced IL-12 production was found to be dependent on TLR2 in DC, but independent on TLR2 and TLR4 in macrophages. Additionally, we investigated the role of exogenous IL-12 and TNF-alpha administration on MyD88 KO control of B. abortus infection. Importantly, IL-12, but not TNF-alpha, was able to partially rescue host susceptibility in MyD88 KO-infected animals. Furthermore, we demonstrated the role played by TLR9 during virulent B. abortus infection. TLR9 KO-infected mice showed 1 log Brucella CFU higher than wild-type mice. Macrophages and DC from TLR9 KO mice showed reduced IL-12 and unaltered TNF-alpha production when these cells were stimulated with Brucella. Together, these results suggest that susceptibility of MyD88 KO mice to B. abortus is due to impaired DC maturation and lack of IL-12 synthesis. Additionally, DC activation during Brucella infection plays an important regulatory role by stimulating and programming T cells to produce IFN-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号