首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: In selected foraging habitats of an agricultural landscape flower visits of bumblebees and community structure of foraging bumblebees were studied, with special regard to the role of crops as super-abundant resources. Most crops represent temporal foraging habitats with high abundance of bumblebees but mainly with low diversity in the bumblebee forage community, in contrast to permanent foraging habitats such as, for example, a hedgerow. The high numbers of bumblebees in the monoculture of crop plantations consisted mainly of short-tongued bumblebee species. The role of foraging distances for the visitation rate of foraging habitats was studied by performing capture–recapture experiments with natural nests of Bombus terrestris , Bombus lapidarius and Bombus muscorum . Differences were found on the species as well as the individual level. The foraging distances of B. muscorum were more restricted to the neighbourhood of the nesting habitat than the foraging activity of B. terrestris and B. lapidarius . High percentages of B. terrestris workers were recaptured while foraging on super-abundant resources in distances up to 1750 m from the nest. Isolated patches of highly rewarding forage crops, in agricultural landscapes, are probably only accessed by bumblebee species with large mean foraging distances, such as the short-tongued B. terrestris . Species like the rare, long-tongued B. muscorum depend on a close connection between nesting and foraging habitat. A restricted foraging radius might be one important factor of bumblebee species loss and potential pollinator limitation in modern agricultural landscapes. Furthermore, long-distance flights of bumblebee pollinators have to be considered in the present discussion on gene flow from transgenic plant species on a landscape scale.  相似文献   

2.
Modeling pollination ecosystem services requires a spatially explicit, process‐based approach because they depend on both the behavioral responses of pollinators to the amount and spatial arrangement of habitat and on the within‐ and between‐season dynamics of pollinator populations in response to land use. We describe a novel pollinator model predicting flower visitation rates by wild central‐place foragers (e.g., nesting bees) in spatially explicit landscapes. The model goes beyond existing approaches by: (1) integrating preferential use of more rewarding floral and nesting resources; (2) considering population growth over time; (3) allowing different dispersal distances for workers and reproductives; (4) providing visitation rates for use in crop pollination models. We use the model to estimate the effect of establishing grassy field margins offering nesting resources and a low quantity of flower resources, and/or late‐flowering flower strips offering no nesting resources but abundant flowers, on bumble bee populations and visitation rates to flowers in landscapes that differ in amounts of linear seminatural habitats and early mass‐flowering crops. Flower strips were three times more effective in increasing pollinator populations and visitation rates than field margins, and this effect increased over time. Late‐blooming flower strips increased early‐season visitation rates, but decreased visitation rates in other late‐season flowers. Increases in population size over time in response to flower strips and amounts of linear seminatural habitats reduced this apparent competition for pollinators. Our spatially explicit, process‐based model generates emergent patterns reflecting empirical observations, such that adding flower resources may have contrasting short‐ and long‐term effects due to apparent competition for pollinators and pollinator population size increase. It allows exploring these effects and comparing effect sizes in ways not possible with other existing models. Future applications include species comparisons, analysis of the sensitivity of predictions to life‐history traits, as well as large‐scale management intervention and policy assessment.  相似文献   

3.
The preservation of pollinator habitat on croplands in the form of hedgerows, wildflower strips, and natural and semi-natural areas can help maintain and enhance wild bee populations in agricultural landscapes. However, there have been few comparisons of the effectiveness of different types of field-margin pollinator habitat in maintaining bee diversity and pollination of the focal crops. We compared wild bee abundance, species richness and community composition between strawberry crops bordered by hedgerows, and those bordered by larger expanses of natural land (forests). Strawberry is an ideal crop in which to investigate pollinator export from field margins as the rows are covered with straw, which reduces habitat for ground-nesting bees within the crop; thus, most wild pollinators need to enter the crop from the margins. We sampled bees in six strawberry fields with hedgerow margins and six strawberry fields with forested margins of at least 200 m in length, using a paired design. We examined strawberry pollen deposition at regular intervals into the fields, and the magnitude of pollinator export from the field margins towards the centre of the crops. We found that bees as a group were no more species-rich or abundant in crops bordered by forests than in crops bordered by hedgerows, although large-bodied bees were more abundant in the former than the latter. Regardless of field-margin type, we found that small wild bee abundance declined significantly from the edge to the centre of the crop, but honey bee (Apis mellifera L.) and large-bodied bee abundance did not. Strawberry pollen deposition also did not decline with distance into the crop. Although previous work indicates that small wild bees are more effective (yield-increasing) pollinators of strawberry on a per-visit basis, their limited foraging ranges suggest they may only pollinate areas near the crop margins, given typical field sizes in our area.  相似文献   

4.
Modelling pollination services across agricultural landscapes   总被引:2,自引:0,他引:2  

Background and Aims

Crop pollination by bees and other animals is an essential ecosystem service. Ensuring the maintenance of the service requires a full understanding of the contributions of landscape elements to pollinator populations and crop pollination. Here, the first quantitative model that predicts pollinator abundance on a landscape is described and tested.

Methods

Using information on pollinator nesting resources, floral resources and foraging distances, the model predicts the relative abundance of pollinators within nesting habitats. From these nesting areas, it then predicts relative abundances of pollinators on the farms requiring pollination services. Model outputs are compared with data from coffee in Costa Rica, watermelon and sunflower in California and watermelon in New Jersey–Pennsylvania (NJPA).

Key Results

Results from Costa Rica and California, comparing field estimates of pollinator abundance, richness or services with model estimates, are encouraging, explaining up to 80 % of variance among farms. However, the model did not predict observed pollinator abundances on NJPA, so continued model improvement and testing are necessary. The inability of the model to predict pollinator abundances in the NJPA landscape may be due to not accounting for fine-scale floral and nesting resources within the landscapes surrounding farms, rather than the logic of our model.

Conclusions

The importance of fine-scale resources for pollinator service delivery was supported by sensitivity analyses indicating that the model''s predictions depend largely on estimates of nesting and floral resources within crops. Despite the need for more research at the finer-scale, the approach fills an important gap by providing quantitative and mechanistic model from which to evaluate policy decisions and develop land-use plans that promote pollination conservation and service delivery.Key words: Agriculture, bees, ecosystem services, landscape ecology, model, land use, pollinators  相似文献   

5.
Bumblebee flight distances in relation to the forage landscape   总被引:2,自引:1,他引:1  
1. Foraging range is a key aspect of the ecology of 'central place foragers'. Estimating how far bees fly under different circumstances is essential for predicting colony success, and for estimating bee-mediated gene flow between plant populations. It is likely to be strongly influenced by forage distribution, something that is hard to quantify in all but the simplest landscapes; and theories of foraging distance tend to assume a homogeneous forage distribution. 2. We quantified the distribution of bumblebee Bombus terrestris L. foragers away from experimentally positioned colonies, in an agricultural landscape, using two methods. We mass-marked foragers as they left the colony, and analysed pollen from foragers returning to the colonies. The data were set within the context of the 'forage landscape': a map of the spatial distribution of forage as determined from remote-sensed data. To our knowledge, this is the first time that empirical data on foraging distances and forage availability, at this resolution and scale, have been collected and combined for bumblebees. 3. The bees foraged at least 1.5 km from their colonies, and the proportion of foragers flying to one field declined, approximately linearly, with radial distance. In this landscape there was great variation in forage availability within 500 m of colonies but little variation beyond 1 km, regardless of colony location. 4. The scale of B. terrestris foraging was large enough to buffer against effects of forage patch and flowering crop heterogeneity, but bee species with shorter foraging ranges may experience highly variable colony success according to location.  相似文献   

6.
Bee foraging ranges and their relationship to body size   总被引:3,自引:0,他引:3  
Bees are the most important pollinator taxon; therefore, understanding the scale at which they forage has important ecological implications and conservation applications. The foraging ranges for most bee species are unknown. Foraging distance information is critical for understanding the scale at which bee populations respond to the landscape, assessing the role of bee pollinators in affecting plant population structure, planning conservation strategies for plants, and designing bee habitat refugia that maintain pollination function for wild and crop plants. We used data from 96 records of 62 bee species to determine whether body size predicts foraging distance. We regressed maximum and typical foraging distances on body size and found highly significant and explanatory nonlinear relationships. We used a second data set to: (1) compare observed reports of foraging distance to the distances predicted by our regression equations and (2) assess the biases inherent to the different techniques that have been used to assess foraging distance. The equations we present can be used to predict foraging distances for many bee species, based on a simple measurement of body size. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The Value of Uncropped Field Margins For Foraging Bumblebees   总被引:3,自引:0,他引:3  
The intensification of agriculture has led to declines in species diversity and abundance within groups of certain flora and fauna. Bumblebees (Bombus spp.) are one group where a decline has been documented, and it is thought to be attributable to a decrease in forage resources and potential nest sites. As bumblebees play an important role in the pollination of many entomophilous crops, this decline could impact on agricultural productivity. We examined the role of naturally regenerated field margins in providing forage plants on land where nectar resources are otherwise impoverished. The following question was addressed – Are naturally regenerated unsprayed field margins more attractive to foraging bumblebees and honeybees than cropped field margins managed as conservation headlands? Significantly more bees visited naturally regenerated field margins than cropped field margins. Honeybees (Apis mellifera), Bombus terrestris, and Bombus lapidarius were the most commonly observed bee species. Different wildflower species within the naturally regenerated margins varied greatly in relative number of visits received, and bumblebee species were found to prefer different flower species to honeybees. The potential role that naturally regenerated field margins could play in the conservation of bumblebee species, and the implications for other species of flora and fauna, are discussed.  相似文献   

8.
Foraging distance is a key determinant of colony survival and pollination potential in bumblebees Bombus spp. However this aspect of bumblebee ecology is poorly understood because of the difficulty in locating colonies of these central place foragers. Here, we used a combination of molecular microsatellite analyses, remote sensing and spatial analyses using kernel density estimates to estimate nest location and foraging distances for a large number of wild colonies of two species, and related these to the distribution of foraging habitats across an experimentally manipulated landscape. Mean foraging distances were 755 m for Bombus lapidarius and 775 m for B. pascuorum (using our most conservative estimation method). Colony‐specific foraging distances of both species varied with landscape structure, decreasing as the proportion of foraging habitats increased. This is the first time that foraging distance in wild bumblebees has been shown to vary with resource availability. Our method offers a means of estimating foraging distances in social insects, and informs the scale of management required to conserve bumblebee populations and enhance their pollination services across different landscapes.  相似文献   

9.
1. Resource pulses, narrow periods of high resource availability, can elicit strong behavioural responses across diverse taxa. Mass‐flowering agricultural crops are an example of a resource pulse that insect pollinators exploit. However, the underlying mechanism behind changes in pollinator behaviour associated with mass‐flowering crops is still relatively unexplored. 2. The present study quantified the behavioural response of bumble bees, an important wild pollinator, to commercial cranberry bloom, an important mass‐flowering crop in Wisconsin, U.S.A. Over a 2‐year period, foraging trip duration was measured using radio frequency identification at 14 farms situated across landscape contexts, ranging from high to low natural area (woodland amount). Using transect surveys, floral resource abundance at a landscape scale was estimated. 3. It was found that bumble bees were highly sensitive to temporal changes in landscape‐level resource abundance associated with the onset of cranberry bloom, during which they decreased foraging trip duration by 22% and increased the number of foraging trips during bloom by 24% on average relative to the period before and after bloom. This phenomenon was consistent across colonies, individual bees, and landscape contexts, despite a higher abundance of flowers in low woodland landscapes. Bumble bee colonies growing in low‐ and high‐woodland landscapes exhibited a similar performance. 4. As mass‐flowering crops are probably a factor influencing bumble bee foraging behaviour in agricultural regions, investigations should continue into how variable resource landscapes, particularly those offering resource pulses, affect wild pollinators and the pollination services they provide.  相似文献   

10.
Bumblebees (Hymenoptera: Apidae) are important pollinators of crops and wildflowers, but many species have suffered dramatic declines in recent decades. Strategies for their conservation require knowledge of their foraging range and nesting density, both of which are poorly understood. Previous studies have mainly focussed on the cosmopolitan bumblebee species Bombus terrestris , and implicitly assume this to be representative of other species. Here we use a landscape-scale microsatellite study to estimate the foraging range and nesting density of two ecologically dissimilar species, B. terrestris and B. pascuorum . Workers were sampled along a 10 km linear transect and 8–9 polymorphic microsatellite markers used to identify putative sisters. We provide the first published estimates of the number of colonies using a circle of radius 50 m in an agricultural landscape: 20.4 for B. terrestris and 54.7 for B. pascuorum . Estimates of nest density differed significantly between the two species: 13 km−2 for B. terrestris and 193 km−2 for B. pascuorum . Foraging ranges also differed substantially, with B. pascuorum foraging over distances less than 312 m and B. terrestris less than 625 m. Clearly bumblebee species differ greatly in fundamental aspects of their ecology. This has significant implications for the development of conservation strategies for rare bumblebees and isolated plant populations, for the management of bumblebees as pollinators, and for predicting patterns of gene flow from genetically modified plants.  相似文献   

11.
Large areas of Western Europe are covered with intensively managed agricultural land. In these landscapes, wild pollinators depend on fragments of semi-natural habitat for foraging or reproduction. Small forest patches are often the most abundant type of semi-natural habitat in these agricultural landscapes. We investigated the role these patches play in conserving the pollinator community in intensively managed agricultural landscapes.Our survey of the pollinator community in 16 forest fragments showed that the pollinator community in the edges of small forest fragments is strongly influenced by forest and forest edge characteristics. Old forest fragments with a well-developed herb layer had more diverse bee communities than recent forests or old forests without a herb layer, but overall lower activity-abundances, while sun exposure of the forest edges had a strong positive effect on pollinater activity-abundance in general. The hoverfly community had higher activity-abundances in forest edges with a higher flower-index, while saproxylic hoverflies were caught in higher numbers in sites with a higher forest cover in the surrounding landscape.We also detected a strong seasonal effect. The effects of herb layer cover on bee species richness and activity-abundance were much stronger in spring than in summer, while bee species richness was also strongly positively correlated with forest age in spring. A strong positive correlation between pollinator species richness and sun exposure was found in summer, after canopy closure.While the sampled forest edges harbour a rich and diverse pollinator community, cavity-nesting bees were very scarce. This is probably caused by the low amount of dead wood in the studied forest fragments.We conclude that small forest fragments can play an important role in conserving the pollinator community, especially bees and saproxylic hoverflies. The importance of these forest fragments is strongest in spring, when the herb layer provides foraging resources.  相似文献   

12.
Christina M. Kennedy  Eric Lonsdorf  Maile C. Neel  Neal M. Williams  Taylor H. Ricketts  Rachael Winfree  Riccardo Bommarco  Claire Brittain  Alana L. Burley  Daniel Cariveau  Luísa G. Carvalheiro  Natacha P. Chacoff  Saul A. Cunningham  Bryan N. Danforth  Jan‐Hendrik Dudenhffer  Elizabeth Elle  Hannah R. Gaines  Lucas A. Garibaldi  Claudio Gratton  Andrea Holzschuh  Rufus Isaacs  Steven K. Javorek  Shalene Jha  Alexandra M. Klein  Kristin Krewenka  Yael Mandelik  Margaret M. Mayfield  Lora Morandin  Lisa A. Neame  Mark Otieno  Mia Park  Simon G. Potts  Maj Rundlf  Agustin Saez  Ingolf Steffan‐Dewenter  Hisatomo Taki  Blandina Felipe Viana  Catrin Westphal  Julianna K. Wilson  Sarah S. Greenleaf  Claire Kremen 《Ecology letters》2013,16(5):584-599
Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local‐scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high‐quality habitats; bee richness on conventional fields with low diversity benefited most from high‐quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high‐quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.  相似文献   

13.
Pollinating insects are not only important in wild plant pollination, but also in the production of a large number of crops. Oilseed rape production is increasing globally due to demands for biofuels which may have impacts on pollinating insects which visit the crop and on the pollination services delivered to co-flowering wild plants. In this study, we tested (1) the degree of pollinator sharing between oilseed rape and native wild plants in field margins and hedgerows and (2) the effects of oilseed rape on the quality of pollination service delivered to these wild plants. We found large overlap between flower visitors of wild plants and oilseed rape, but the composition of species overlap differed with respect to each wild plant species. Nearly all individual visitors caught on both the crop and foraging on wild species carried crop pollen, but more than half the insects also carried pollen from wild plants. However, very little oilseed rape pollen was deposited on wild plant stigmas. This shows that (1) oilseed rape overlaps in pollinator niche with most co-flowering wild plants, and (2) crop pollen deposition on wild plant stigmas is low which may indicate that it is unlikely to cause reductions in seed set of wild plants, although this was not measured here. Furthermore, wild plants in field margins and hedgerows are important sources of alternative forage for pollinating insects even when a crop is mass flowering, and we suggest maintenance and augmentation of field margins and hedgerows to provide alternative forage for pollinator conservation to continue provision of pollination services to both crops and wild plants.  相似文献   

14.
A major challenge in habitat restoration is targeting the key aspects of a species' niche for enhancement, particularly for species that use a diverse set of habitat features. However, restoration that focuses on limited aspects of a species' niche may neglect other resources that are critical to population persistence. We evaluated the ability of native plant hedgerows, planted to increase pollen and nectar resources for wild bees in agricultural landscapes, to provide suitable nesting habitat and enhance nesting rates of ground‐nesting bees. We found that, when compared to unmanaged field edges (controls), hedgerows did not augment most indicators of nest habitat quality (bare ground, soil surface irregularity, and soil hardness), although coarser soils were associated with higher incidence and richness of nesting bees. Hedgerows did not augment nesting rates when compared to control edges. Although all the bee species we detected nesting were also found foraging on floral resources, the foraging versus nesting assemblages found within a site were highly dissimilar. These results may reflect sampling error; or, species found foraging but not nesting in hedgerows could be utilizing hedgerows as “partial habitats,” nesting outside hedgerow plantings but foraging on the floral resources they provide. We conclude that although hedgerows are known to provide critical floral resources to wild bees especially in resource‐poor intensive agricultural landscapes, simply increasing vegetative diversity and structure may not be simultaneously enhancing nesting habitat for ground‐nesting bees.  相似文献   

15.
Floral foraging resources are valuable for pollinator conservation on farmland, and their provision is encouraged by agri‐environment schemes in many countries. Across Europe, wildflower seed mixtures are widely sown on farmland to encourage pollinators, but the extent to which key pollinator groups such as solitary bees exploit and benefit from these resources is unclear. We used high‐throughput sequencing of 164 pollen samples extracted from the brood cells of six common cavity‐nesting solitary bee species (Osmia bicornis, Osmia caerulescens, Megachile versicolor, Megachile ligniseca, Megachile centuncularis and Hylaeus confusus) which are widely distributed across the UK and Europe. We documented their pollen use across 19 farms in southern England, UK, revealing their forage plants and examining the structure of their pollen transport networks. Of the 32 plant species included currently in sown wildflower mixes, 15 were recorded as present within close foraging range of the bees on the study farms, but only Ranunculus acris L. was identified within the pollen samples. Rosa canina L. was the most commonly found of the 23 plant species identified in the pollen samples, suggesting that, in addition to providing a nesting resource for Megachile leafcutter bees, it may be an important forage plant for these species. Higher levels of connectance and nestedness were characteristic of pollen transport networks on farms with abundant floral resources, which may increase resilience to species loss. Our data suggest that plant species promoted currently by agri‐environment schemes are not optimal for solitary bee foraging. If a diverse community of pollinators is to be supported on UK and European farmland, additional species such as R. canina should be encouraged to meet the foraging requirements of solitary bees.  相似文献   

16.
Pesticides are an important potential cause of biodiversity and pollinator decline. Little is known about the impacts of pesticides on wild pollinators in the field. Insect pollinators were sampled in an agricultural system in Italy with the aim of detecting the impacts of pesticide use. The insecticide fenitrothion was over 150 times greater in toxicity than other pesticides used in the area, so sampling was set up around its application. Species richness of wild bees, bumblebees and butterflies were sampled at three spatial scales to assess responses to pesticide application: (i) the ‘field’ scale along pesticide drift gradients; (ii) the ‘landscape’ scale sampling in different crops within the area and (iii) the ‘regional’ scale comparing two river basins with contrasting agricultural intensity. At the field scale, the interaction between the application regime of the insecticide and the point in the season was important for species richness. Wild bee species richness appeared to be unaffected by one insecticide application, but declined after two and three applications. At the landscape scale, the species richness of wild bees declined in vine fields where the insecticide was applied, but did not decline in maize or uncultivated fields. At the regional scale, lower bumblebee and butterfly species richness was found in the more intensively farmed basin with higher pesticide loads. Our results suggest that wild bees are an insect pollinator group at particular risk from pesticide use. Further investigation is needed on how the type, quantity and timing of pesticide application impacts pollinators.  相似文献   

17.
Understanding how urbanization alters functional interactions among pollinators and plants is critically important given increasing anthropogenic land use and declines in pollinator populations. Pollinators often exhibit short‐term specialization and visit plants of the same species during one foraging trip. This facilitates plant receipt of conspecific pollen—pollen on a pollinator that is the same species as the plant on which the pollinator was foraging. Conspecific pollen receipt facilitates plant reproductive success and is thus important to plant and pollinator persistence. We investigated how urbanization affects short‐term specialization of insect pollinators by examining pollen loads on insects’ bodies and identifying the number and species of pollen grains on insects caught in urban habitat fragments and natural areas. We assessed possible drivers of differences between urban and natural areas, including frequency dependence in foraging, species richness and diversity of the plant and pollinator communities, floral abundance, and the presence of invasive plant species. Pollinators were more specialized in urban fragments than in natural areas, despite no differences in the species richness of plant communities across site types. These differences were likely driven by higher specialization of common pollinators, which were more abundant in urban sites. In addition, pollinators preferred to forage on invasive plants at urban sites and native plants at natural sites. Our findings reveal indirect effects of urbanization on pollinator fidelity to individual plant species and have implications for the maintenance of plant species diversity in small habitat fragments. Higher preference of pollinators for invasive plants at urban sites suggests that native species may receive fewer visits by pollinators. Therefore, native plant species diversity may decline in urban sites without continued augmentation of urban flora or removal of invasive species.  相似文献   

18.
The emergence of agricultural land use change creates a number of challenges that insect pollinators, such as eusocial bees, must overcome. Resultant fragmentation and loss of suitable foraging habitats, combined with pesticide exposure, may increase demands on foraging, specifically the ability to collect or reach sufficient resources under such stress. Understanding effects that pesticides have on flight performance is therefore vital if we are to assess colony success in these changing landscapes. Neonicotinoids are one of the most widely used classes of pesticide across the globe, and exposure to bees has been associated with reduced foraging efficiency and homing ability. One explanation for these effects could be that elements of flight are being affected, but apart from a couple of studies on the honeybee (Apis mellifera), this has scarcely been tested. Here, we used flight mills to investigate how exposure to a field realistic (10 ppb) acute dose of imidacloprid affected flight performance of a wild insect pollinator—the bumblebee, Bombus terrestris audax. Intriguingly, observations showed exposed workers flew at a significantly higher velocity over the first ¾ km of flight. This apparent hyperactivity, however, may have a cost because exposed workers showed reduced flight distance and duration to around a third of what control workers were capable of achieving. Given that bumblebees are central place foragers, impairment to flight endurance could translate to a decline in potential forage area, decreasing the abundance, diversity, and nutritional quality of available food, while potentially diminishing pollination service capabilities.  相似文献   

19.
Context-dependent behavior and the benefits of communal nesting   总被引:2,自引:0,他引:2  
We present a model for the behavior of communally nesting insects. Females may forage for food to provision offspring or may remain in the nest, with the option of eating and replacing nest mates' eggs. Orphaned brood are at risk of predation. The optimal behavior of solitary females is determined using stochastic dynamic programming; static and dynamic evolutionarily stable strategies (ESSs) are then calculated for colonies of various sizes. A solitary female should forage if her brood is smaller than a time-dependent threshold. Females in small colonies should forage. In colonies above some threshold size, the static ESS is for one female to forage and the rest to cheat. The dynamic ESS in large colonies is for no females to forage until some time close to the end of the foraging season and for all females to forage thereafter. Mixed dynamic ESSs, with some foragers and some cheats, may arise if individuals differ in their chances of surviving a foraging interval or if females with new offspring vary their guarding behavior, depending on the numbers of cheats and new cells in the nest. We discuss these predictions in the light of published observations and preliminary data on the halictine bee Lasioglossum (Chilalictus) hemichalceum.  相似文献   

20.
Although the importance of natural habitats to pollinator diversity is widely recognized, the value of forests to pollinating insects has been largely overlooked in many parts of the world. In this review, we (i) establish the importance of forests to global pollinator diversity, (ii) explore the relationship between forest cover and pollinator diversity in mixed-use landscapes, and (iii) highlight the contributions of forest-associated pollinators to pollination in adjacent crops. The literature shows unambiguously that native forests support a large number of forest-dependent species and are thus critically important to global pollinator diversity. Many pollinator taxa require or benefit greatly from resources that are restricted to forests, such as floral resources provided by forest plants (including wind-pollinated trees), dead wood for nesting, tree resins, and various non-floral sugar sources (e.g. honeydew). Although landscape-scale studies generally support the conclusion that forests enhance pollinator diversity, findings are often complicated by spatial scale, focal taxa, landscape context, temporal context, forest type, disturbance history, and external stressors. While some forest loss can be beneficial to pollinators by enhancing habitat complementarity, too much can result in the near-elimination of forest-associated species. There is strong evidence from studies of multiple crop types that forest cover can substantially increase yields in adjacent habitats, at least within the foraging ranges of the pollinators involved. The literature also suggests that forests may have enhanced importance to pollinators in the future given their role in mitigating the negative effects of pesticides and climate change. Many questions remain about the amount and configuration of forest cover required to promote the diversity of forest-associated pollinators and their services within forests and in neighbouring habitats. However, it is clear from the current body of knowledge that any effort to preserve native woody habitats, including the protection of individual trees, will benefit pollinating insects and help maintain the critical services they provide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号