首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial cell differentiation frequently occurs in situ in conjunction with supporting mesenchyme or connective tissue. In embryonic development the importance of the supporting mesenchyme for cytodifferentiation and morphogenesis has been demonstrated in several epithelial tissues, but the importance of epithelial-connective tissue interactions is less well studied in adult epithelial organs. We have investigated the interaction of adult mammary epithelial cells with adipocytes, which compose the normal supporting connective tissue in the mammary gland. Mammary epithelial cells from mice in various physiological states were cultured on cellular substrates of adipocytes formed from cells of the 3T3-L1 preadipocyte cell line. We found that there were two distinct phases to the interaction of epithelial cells with adipocytes. Cytodifferentiation of the epithelial cells and milk protein production were dependent on lactogenic hormones (insulin, hydrocortisone, and prolactin), whereas ductal morphogenesis was lactogenic hormone independent. When cultured on preadipocytes or adipocytes, mammary epithelial cells from never pregnant, pregnant, lactating, and involuting mice responded to lactogenic hormones rapidly by producing and secreting large amounts of alpha-, beta-, and gamma-casein and alpha-lactalbumin. This response was seen in individual as well as in clusters of epithelial cells, but was not seen if the same cells were cultured on tissue culture dishes without adipocytes, on fibroblasts (human newborn foreskin fibroblasts) or in the presence of adipocytes but in the absence of lactogenic hormones. Continued incubation of mammary epithelial cells on adipocytes in the presence or absence of lactogenic hormones resulted in the formation of a branching ductal system. Mammary epithelial cells in ducts that formed in the absence of lactogenic hormones produced no casein, but rapidly synthesized casein when subsequently exposed to these hormones. Ultrastructural studies revealed that the formation of a basement membrane occurs only in co-cultures of mammary epithelium with adipocytes or preadipocytes. Ultrastructural changes associated with secretion occurred only in the presence of lactogenic hormones. We propose that growth and formation of a ductal system in vitro can occur in the absence of lactogenic hormones, but that certain environment-associated events must occur if the epithelium is to become responsive to lactogenic hormones and undergo the cytodifferentiation associated with lactation.  相似文献   

2.
Mammary epithelial cells undergo changes in growth, invasion, differentiation, and dedifferentiation throughout much of adult hood, and most strikingly during pregnancy, lactation, and involution. Clusterin is a multifunctional glycoprotein that is involved in the differentiation and morphogenesis of epithelia, and that is important in the regulation of postnatal mammary gland development. However, the mechanisms that regulate clusterin expression are still poorly understood. Here, we show that clusterin is up-regulated twice during mouse mammary gland development, a first time at the end of pregnancy and a second time at the beginning of the involution. These points of clusterin up-regulation coincide with the dramatic phenotypic and functional changes occurring in the mammary gland. Using cell culture conditions that resemble the regulatory microenvironment in vivo, we determined that the factors responsible for the first up-regulation of clusterin levels can include the extracellular matrix component, laminin, and the lactogenic hormones, prolactin and hydrocortisone. On the other hand, the second and most dramatic up-regulation of clusterin can be due to the potent induction by TGF-beta1, and this up-regulation by TGF-beta1 is dependent on beta1 integrin ligand-binding activity. Moreover, the level of expression of beta-casein, a marker of mammary epithelial cell differentiation, was decreased upon treatment of cells with clusterin siRNA. Overall, these findings reveal several novel pathways for the regulation of clusterin expression during mammary gland development, and suggest that clusterin is a morphogenic factor that plays a key role during differentiation.  相似文献   

3.
The mammary gland is a dynamic organ that undergoes cyclic developmental and regressive changes during the lifetime of a female mammal. Mammogenesis begins during embryonic life with the development of the first mammary gland rudiments and ductal system. After birth, during the pre-pubertal period, the ductal growth of the mammary parenchyma occurs through the fat pad. In most of the ruminant species allometric mammary parenchyma development begins with the onset of cyclic ovarian secretions activity. The two main hormones secreted during an ovarian cycle are estradiol and progesterone. These steroid hormones are derived from cholesterol and are synthesized by theca and granulosa cells in ovaries. During puberty, the mammary parenchyma develops in a compact, highly arborescent parenchymal mass surrounded by a dense connective matrix. Ductal elongation and lobulo-alveolar development are accomplished during growth and pregnancy to prepare for future milk production. At the end of lactation, the mammary gland undergoes involution, which corresponds to a regression of the secretory tissue, a reduction in the alveolar size and a loss of mammary epithelial cells (MECs). Ovarian steroids (estradiol and progesterone) appear to be key regulators of the different stages of mammogenesis and mammary function. Through this review, the role and the importance of ovarian steroids on mammary gland and on MECs is described.  相似文献   

4.
Mammary gland and epithelial cells are unique to mammals and are under the control of lactogenic hormones such as prolactin. Recent findings indicated that major components of milk fat globule membrane (MFGM) are under the control of lactogenic hormones, and that the major components butyrophilin and xanthine oxidoreductase are indispensable for milk fat secretion. Further, prolactin signaling is negatively controlled by two highly related protein tyrosine phosphatases, PTP1B and TC-PTP. Milk fat globule EGF factor 8 (MFG-E8) is one of the major components of MFGM and is upregulated during lactation. MFG-E8 is further upregulated in the involuting mammary gland. MFG-E8 on exosome-like membrane vesicles in the milk recovered from post-weaning but not lactating mammary glands exhibits higher binding activity to phosphatidylserine and apoptotic mammary epithelial cells, and serves as a link between apoptotic mammary epithelial cells and phagocytes. Recent reports using MFG-E8 deficient mice support the view that MFG-E8 is indispensable for eliminating apoptotic mammary epithelial cells during involution.  相似文献   

5.
Autophagy is a catabolic process providing an alternative energy source for cells under stressful conditions such as starvation, growth factor deprivation or hypoxia. During involution of the bovine mammary gland autophagy is induced in mammary epithelial cells (MECs) as a survival mechanism, and is tightly regulated by hormones and growth factors necessary for gland development. In the present study we adapted the three-dimensional culture model to investigate the role of autophagy during formation of alveoli-like structures by bovine BME-UV1 MECs grown on extracellular matrix (ECM) components. Using confocal microscopy and Western-blot analyses of autophagic and apoptotic markers: LC3, and cleaved caspase-3, we showed that autophagy was induced in centrally localized cells within the developing acini. These cells lacked a direct contact with ECM, and formed a distinct population from the outer layer of cells. Induction of autophagy preceded apoptosis, but did not inhibit the formation of a hollow lumen. In the presence of steroid hormones: 17β-estradiol and progesterone, although autophagy was augmented, acini formation proceeded normally. In contrast, the major lactogenic hormone: prolactin, which supports functional differentiation of alveoli, did not alter induction of autophagy within the spheroids. BME-UV1 cells cultured on Matrigel in the presence of growth factors IGF-I and EGF formed larger, underdeveloped acini without lumens due to caspase-3 inhibition, and sustained autophagy in the centre of the spheroids, while TGF-β1 accelerated apoptosis, and increased autophagy significantly. Our observations suggest that sex steroids 17β-estradiol and progesterone, as well as growth factor TGF-β1 may regulate the development of the bovine mammary gland by inducing autophagy in addition to regulating proliferation and apoptosis of MECs. These data indicate that autophagy may play an important role during alveolargenesis.  相似文献   

6.
7.
Studies were undertaken to examine the natural role of ErbB2, ErbB3, and ErbB4 during the development of normal rat mammary epithelial cells (MECs) in vivo and in vitro. Immunohistochemical analysis demonstrated that mammary gland terminal end buds expressed abundant ErbB2 and ErbB4 but limited ErbB3 in pubescent rats, whereas luminal epithelial cells in nulliparous rats expressed ErbB2, ErbB3, and/or ErbB4. During pregnancy, ductal epithelial cells and stromal cells expressed abundant ErbB3 but limited ErbB2. Although ErbB2 and ErbB3 were downregulated throughout lactation, both receptors were re-expressed during involution. In contrast, ErbB4 was downregulated throughout pregnancy, lactation, and involution. Immunoblotting and immunoprecipitation studies confirmed the developmental expression of ErbB2 and ErbB3 in the mammary gland and the co-localization of distinct ErbB receptors in the mammary gland of nulliparous rats. In agreement with our in vivo findings, primary culture studies demonstrated that ErbB2 and ErbB3 were expressed in functionally immature, terminally differentiated and apoptotic MECs, and downregulated in functionally differentiated MECs. ErbB receptor signaling was required for epithelial cell growth, functional differentiation, and morphogenesis of immature MECs, and the survival of terminally differentiated MECs. Finally, ErbB4 expression did not interfere with functional differentiation and apoptosis of normal MECs.  相似文献   

8.
9.
10.
We have previously demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) is upregulated following treatment of the mouse mammary epithelial cell line HC11 with lactogenic hormones (dexamethasone, insulin, and prolactin-DIP). In addition, we have also shown that IGFBP-5 is upregulated in mammary epithelial cells in vivo during involution of the rodent mammary gland. We have, therefore, postulated that there may be a dual regulation of IGFBP-5 expression during the temporally separated processes of differentiation and apoptosis of mammary epithelial cells. To test this hypothesis further, we have used a phenotypically differentiated model, which comprises primary cultures of mouse mammary epithelial cells grown on a layer of EHS (Engelbreth-Holm-Swarm) extracellular matrix. We show that lactogenic hormone treatment (hydrocortisone, insulin, and prolactin-HIP) of these cultures induces the upregulation of IGFBP-5 thus replicating the results obtained with the HC11 cell line. In addition, following the induction of apoptosis in primary cultures of mammary epithelial cells by treatment with TGFbeta-3, IGFBP-5 expression is also upregulated. In parallel with this upregulation of IGFBP-5, there is also an increase in the levels of cleaved caspase-3, a well-characterized marker of cellular apoptosis. These findings confirm previous in vivo work demonstrating an increase in IGFBP-5 expression during involution of the mouse mammary gland. When HC11 cells are cultured under serum-free conditions (a well-characterized apoptotic insult in cell culture), there is also an increase in cleaved caspase-3 levels. Unexpectedly, in the presence of TGFbeta-3, caspase-3 levels are attenuated. In the presence of DIP, caspase-3 levels are also decreased in HC11 cells. As described previously, TGFbeta-3 inhibits beta-casein synthesis in HC11 cells. In the HC11 cell line (in contrast to primary cultures of mammary epithelial cells), there is no evidence for TGFbeta-3 induction of IGFBP-5 under either serum-free or DIP-supplemented conditions. We believe our data with primary cultures of mammary epithelial cells support the hypothesis of dual regulation of IGFBP-5 expression during both differentiation and apoptosis in the mammary gland and emphasizes the importance of using appropriate cell culture models to investigate such phenomena in this tissue. We discuss the possible implications of our observations in relation to the physiological processes of pregnancy, lactation, and involution in the mammary gland and the associated changes in mammary epithelial cell function.  相似文献   

11.
Leukemia inhibitory factor (LIF) is a multifunctional glycoprotein that displays multiple biological activities in different cell types, but to date there has been no report on its expression in the normal mammary gland. In this study we found that LIF is expressed at low but detectable levels in postpubertal, adult virgin, and pregnant mouse mammary glands. However, LIF expression drops after parturition to become almost undetectable in lactating glands. Interestingly, LIF expression shows a steep increase shortly after weaning that is maintained for the following 3 days. During this period, known as the first stage of mammary gland involution, the lack of suckling induces local factors that cause extensive epithelial cell death. It has been shown that Stat3 is the main factor in signaling the initiation of apoptosis, but the mechanism of its activation remains unclear. Herein, we show that LIF expression in the gland is induced by milk stasis and not by the decrease of circulating lactogenic hormones after weaning. Implantation of LIF containing pellets in lactating glands results in a significant increase in epithelium apoptosis. In addition, this treatment also induces Stat3 phosphorylation. We conclude that LIF regulated expression in the mouse mammary gland may play a relevant role during the first stage of mammary gland involution. Our results also show that LIF-induced mammary epithelium apoptosis could be mediated, at least partially, by Stat3 activation.  相似文献   

12.
Mammary epithelial cells terminally differentiate in response to lactogenic hormones. We present evidence that oncoprotein overexpression is incompatible with this hormone-inducible differentiation and results in striking cellular morphological changes. In mammary epithelial cells in culture, lactogenic hormones (glucocorticoid and prolactin) activated a transfected beta-casein promoter and endogenous beta-casein gene expression. This response to lactogenic hormone treatment was paralleled by a decrease in cellular AP-1 DNA-binding activity. Expression of the mos, ras, or src (but not myc) oncogene blocked the activation of the beta-casein promoter induced by the lactogenic hormones and was associated with the maintenance of high levels of AP-1. Mos expression also increased c-fos and c-jun mRNA levels. Overexpression of Fos and Jun from transiently transfected constructs resulted in a functional inhibition of the glucocorticoid receptor in these mouse mammary epithelial cells. This finding clearly suggests that glucocorticoid receptor inhibition arising from oncogene expression will contribute to the block in hormonally induced mammary epithelial cell differentiation. Expression of Src resulted in the loss of the normal organization and morphological phenotype of mammary epithelial cells in the epithelial/fibroblastic line IM-2. Activation of a conditional c-fos/estrogen receptor gene encoding an estrogen-dependent Fos/estrogen receptor fusion protein also morphologically transformed mammary epithelial cells and inhibited initiation of mammary epithelial differentiation-associated expression of the beta-casein and WDNM 1 genes. In response to estrogen treatment, the cells displayed a high level of AP-1 DNA-binding activity. Our results demonstrate that high cellular AP-1 levels contribute to blocking the ability of mammary epithelial cells in culture to respond to lactogenic hormones. This and other studies indicate that the oncogene products Mos, Ras, and Src exert their effects, at least in part, by stimulating cellular Fos and probably cellular Jun activity.  相似文献   

13.
14.
We have established three independent ovine mammary epithelial cell lines which arose from primary cultures of ovine mammary epithelial cells by spontaneous immortalization. One of them, OMEC II, was characterised in greater detail. The cells grow rapidly on plastic dishes in medium containing 10% FCS without any requirement for additional growth factors or hormones. Immunofluorescence staining of this cell line showed expression of cytokeratin (46 kDa) and ZO-1, a tight-junction associated protein, but negative immunostaining for an anti-vimentin antibody. In confluent cell monolayers ‘domes’ became visible indicating the development of a polarised phenotype and the ability of directed secretion. When grown in collagen gels typical ducts with end-buds were observed. Treatment with lactogenic hormones increased the frequency of dome formation, but no expression of β-lactoglobulin was found. To our knowledge this is the first report on an ovine mammary epithelial cell line.  相似文献   

15.
16.
Summary We have established and partially characterized a spontaneously immortalized bovine mammary epithelial cell line, designated HH2a. The cells express the gene encoding for mammary derived growth inhibitor (MDGI) when grown on released collagen gels in the presence of lactogenic hormones. This is the first report of a cell line that expresses MDGI. Immunohistochemical studies showed that HH2a cells contain keratin intermediate filaments and desmosomes. When plated on confluent monolayer of live fibroblasts, HH2a cells extensively contacted with fibroblasts. When embedded in the collagen gels, they rearranged themselves to produce three-dimensional duct-like outgrowths extending into the matrix. The HH2a cell line should be useful in investigations of the roles of cell-cell and cell-extracellular interactions in regulation of breast epithelial cell proliferation, and of the hormonal regulation of MDGI gene expression.  相似文献   

17.
The present study was carried out to examine whether activation of adenosine receptors by adenosine analogues will affect casein production by mouse mammary epithelial cells. The morphogenesis and functions of epithelial tissue in the mammary gland are influenced by their surrounding adipocytes. Adipocytes are known to release adenosine into the extracellular fluid which can modulate cyclic-AMP levels in surrounding cells through binding to their adenosine receptors. To examine a possible paracrine effect of adenosine, the modulation of casein production in mammary explant culture and mammary epithelial cell (MEC) culture by adenosine receptor agonists has been investigated. We have observed that activation of the A1-adenosine receptor subtype in mammary tissue by an adenosine analogue (—)N6-(R-phenyl-isopropyl)-adenosine (PIA) raised cAMP levels. PIA and another adenosine receptor agonist, isobutylmethylxanthine (IBMX), inhibited casein accumulation both in explants and in MEC cultures in the presence of lactogenic hormones, which suggests that PIA or adenosine can act directly on the epithelial cells. This inhibition does not appear to be caused by elevation of cAMP levels or phosphodiesterase activity. The inhibition of intracellular casein accumulation by PIA and IBMX in explant cultures can be reversed via treatment of pertussis toxin which is known to ADP-ribosylate GTP-binding Gαi-proteins, indicating that a Gi-protein-dependent pathway may be involved in this inhibition. The results also suggest that local accumulation of adenosine in the extracellular fluids of mammary glands is likely to inhibit the lactogenic response of mammary epithelial cells. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Cellular responses are determined by a number of signaling cues in the local microenvironment, such as growth factors and extracellular matrix (ECM). In cultures of mammary epithelial cells (MECs), functional differentiation requires at least two types of signal, lactogenic hormones (i.e., prolactin, insulin, and hydrocortisone) and the specialized ECM, basement membrane (BM). Our previous work has shown that ECM affects insulin signaling in mammary cells. Cell adhesion to BM promotes insulin‐stimulated tyrosine phosphorylation of insulin receptor substrate‐1 (IRS‐1) and association of PI3K with IRS‐1, whereas cells cultured on stromal ECM are inefficient in transducing these post‐receptor events. Here we examine the mechanisms underlying ECM control of IRS phosphorylation. Compared to cells cultured on BM, cells on plastic exhibit higher level of RhoA activity. The amount and the activity of Rho kinase (Rok) associated with IRS‐1 are greater in these cells, leading to serine phosphorylation of IRS‐1. Expression of dominant negative RhoA and the application of Rok inhibitor Y27632 in cells cultured on plastic augment tyrosine phosphorylation of IRS‐1. Conversely, expression of constitutively active RhoA in cells cultured on BM impedes insulin signaling. These data indicate that RhoA/Rok is involved in substratum‐mediated regulation of insulin signaling in MECs, and under the conditions where proper adhesion to BM is missing, such as after wounding and during mammary gland involution, insulin‐mediated cellular differentiation and survival would be defective. J. Cell. Physiol. 220: 476–484, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The use of cell culture models is a principal and fundamental technology used in understanding how mammalian cells work. However, for some cell types such as mammary epithelia, the lines selected for extended culture are often transformed or have chromosomal abnormalities, while primary cultures have such a curtailed lifespan that their use is restricted. For example, mammary luminal epithelial cells (MECs) are used to study mechanisms of breast cancer, but the proliferation of primary cell cultures is highly limited. Here we describe the establishment of a new culture system to allow extended analysis of cultures of primary mouse MECs. In 2D monolayer culture, primary MECs showed a burst of proliferation 2-3 days post isolation, after which cell cycle decreased substantially. Addition of mammary epithelial growth factors, such as Epidermal Growth Factor, Fibroblast Growth Factor-2, Hepatocyte Growth Factor, and Receptor Activator for Nuclear Factor κB Ligand, or extracellular matrix proteins did not maintain their proliferation potential, neither did replating the cells to increase the mitogenic response. However, culturing MECs directly after tissue extraction in a 3D microenvironment consisting of basement membrane proteins, extended the time in culture in which the cells could proliferate. Our data reveal that the cellular microenvironment has profound effects on the proliferative properties of the mammary epithelia and is dominant over growth factors. Moreover, manipulating the cellular environment using this novel method can maintain the proliferative potential of primary MECs, thus enabling cell cycle to be studied as an endpoint after gene transfer or gene deletion experiments.  相似文献   

20.
Summary Mammary epithelial cells from lactating mice synthesize and secrete lactose in culture and retain many features of their in vivo morphology if mammary glands are only partially dissociated to alveoli, rather than completely dissociated to single cells. After 5 d in culture lactose synthesis by alveoli cultured on floating collagen gels is 10 to 20 times higher than in cultures of single cells on floating collagen gels. Moreover, mammary alveoli in culture retain sensitivity to lactogenic hormones; the synthesis of lactose by alveoli depends on the continued presence of insulin and either hydrocortisone or prolactin. In addition, within alveoli the original juxtaposition of constituent epithelial cells is retained, and cells are cuboidal and have many microvilli and fat droplets. In contrast, alveoli on attached gels flatten and lose their secretory morphology. These results indicate that the shape of the cells, presence of lactogenic hormones, and maintenance of epithelial:epithelial cell contacts are required for maintenance of mammary epithelial cell differentiation in culture. This research was supported by Grants CA-16392 and AG-02909 from the National Institutes of Health and Institutional Grant IN 119 from the American Cancer Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号