首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Temperature was used as a biophysical tool to investigate the energy changes associated with conformational change during the gating of a non-inactivating voltage-gated K+ channel present in the membrane of αT3-1 cells, a gonadotroph cell line. The time course of the current activation was described by a single exponential function at three temperatures: 15, 25 and 35 °C. The Q 10 values were between 1.5 to 1.9 and in agreement with the activation energy determined from Arrhenius plots of the forward and backward rate constants associated with channel opening. The Gibb's free energy change associated with channel opening and closing at various membrane potentials estimated by two approaches yield similar values. The changes in Gibb's free energy (ΔG°) with depolarization potential is a quadratic and more prominent at 15 than at 25 or 35 °C. The results suggest that increase in temperature favours movement of voltage sensing segments, and reduces the restraint on them brought about by other parts of the channel molecule. Received: 2 September 1998 / Revised version: 27 October 1998 / Accepted: 21 January 1999  相似文献   

3.
Li L  Cheng JX 《Biochemistry》2006,45(39):11819-11826
We report a new type of gel-liquid phase segregation in giant unilamellar vesicles (GUVs) of mixed lipids. Coexisting patch- and stripe-shaped gel domains in GUV bilayers composed of DOPC/DPPC or DLPC/DPPC are observed by confocal fluorescence microscopy. The lipids in stripe domains are shown to be tilted according to the DiIC18 fluorescence intensity dependence on the excitation polarization. The patch domains are found to be mainly composed of DPPC-d62 according to the coherent anti-Stokes Raman scattering (CARS) images of DOPC/DPPC-d62 bilayers. When cooling GUVs from above the miscibility temperature, the patch domains start to appear between the chain melting and the pretransition temperature of DPPC. In GUVs containing a high molar percentage of DPPC, the stripe domains form below the pretransition temperature. Our observations suggest that the patch and stripe domains are in the Pbeta' and Lbeta' gel phases, respectively. According to the thermoelastic properties of GUVs described by Needham and Evans [(1988) Biochemistry 27, 8261-8269], the Pbeta' and Lbeta' phases are formed at relatively low and high membrane tensions, respectively. GUVs with high DPPC percentage have high membrane surface tension and thus mainly exhibit Lbeta' domains, while GUVs with low DPPC percentage have low membrane surface tension and form Pbeta' domains accordingly. Adding negatively charged lipid to the lipid mixtures or applying an osmotic pressure to GUVs using sucrose solutions releases the surface tension and leads to the disappearance of the Lbeta' gel phase. The relationship between the observed domains in free-standing GUV bilayers and those in supported bilayers is discussed.  相似文献   

4.
Unilamellar vesicle populations having a narrow size distribution and mean radius below 100 nm are preferred for drug delivery applications. In the present work, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was used to prepare giant unilamellar vesicles (GUVs) by electroformation and multilamellar vesicles (MLVs) by thin film hydration. Our experiments show that in contrast to MLVs, a single-pass extrusion of GUVs through track-etched polycarbonate membranes at moderate pressure differences is sufficient to produce small liposomes having low polydispersity index. Moreover, we observe that the drug encapsulating potential of extruded liposomes obtained from GUVs is significantly higher compared to liposomes prepared by extrusion of MLVs. Furthermore, our experiments carried out for varying membrane pore diameters and extrusion pressures suggest that the size of extruded liposomes is a function of the velocity of GUV suspensions in the membrane pore.  相似文献   

5.
Transient cerebral ischemia is known to induce endogenous mechanisms that can prevent or delay neuronal injury, such as the activation of mitochondrial potassium channels. However, the molecular mechanism of this effect remains unclear. In this study, the single-channel activity was measured using the patch-clamp technique of the mitoplasts isolated from gerbil hippocampus. In 70% of all patches, a potassium-selective current with the properties of a voltage-gated Kv-type potassium channel was recorded with mean conductance 109 ± 6 pS in a symmetrical solution. The channel was blocked at negative voltages and irreversibly by margatoxin, a specific Kv1.3 channel inhibitor. The ATP/Mg2+ complex and Ca2+ ions had no effect on channel activity. Additionally, agitoxin-2, a potent inhibitor of voltage-gated potassium channels, had no effect on mitochondrial channel activity. This observation suggests that in contrast to surface membrane channels, the mitochondrial voltage-gated potassium channel could have a different molecular structure with no affinity to agitoxin-2. Western blots of gerbil hippocampal mitochondria and immunohistochemistry on gerbil brain sections confirmed the expression of the Kv1.3 protein in mitochondria. Our findings indicate that gerbil brain mitochondria contain a voltage-gated potassium channel that can influence the function of mitochondria in physiological and pathological conditions and that has properties similar to the surface membrane Kv1.3 channel.  相似文献   

6.
We developed a new (to our knowledge) protocol to generate giant unilamellar vesicles (GUVs) composed of mixtures of single lipopolysaccharide (LPS) species and Escherichia coli polar lipid extracts. Four different LPSs that differed in the size of the polar headgroup (i.e., LPS smooth > LPS-Ra > LPS-Rc > LPS-Rd) were selected to generate GUVs composed of different LPS/E. coli polar lipid mixtures. Our procedure consists of two main steps: 1), generation and purification of oligolamellar liposomes containing LPSs; and 2), electroformation of GUVs using the LPS-containing oligolamellar vesicles at physiological salt and pH conditions. Analysis of LPS incorporation into the membrane models (both oligolamellar vesicles and GUVs) shows that the final concentration of LPS is lower than that expected from the initial E. coli lipids/LPS mixture. In particular, our protocol allows incorporation of no more than 15 mol % for LPS-smooth and LPS-Ra, and up to 25 mol % for LPS-Rc and LPS-Rd (with respect to total lipids). We used the GUVs to evaluate the impact of different LPS species on the lateral structure of the host membrane (i.e., E. coli polar lipid extract). Rhodamine-DPPE-labeled GUVs show the presence of elongated micrometer-sized lipid domains for GUVs containing either LPS-Rc or LPS-Rd above 10 mol %. Laurdan GP images confirm this finding and show that this particular lateral scenario corresponds to the coexistence of fluid disordered and gel (LPS-enriched)-like micron-sized domains, in similarity to what is observed when LPS is replaced with lipid A. For LPSs containing the more bulky polar headgroup (i.e., LPS-smooth and LPS-Ra), an absence of micrometer-sized domains is observed for all LPS concentrations explored in the GUVs (up to ∼15 mol %). However, fluorescence correlation spectroscopy (using fluorescently labeled LPS) and Laurdan GP experiments in these microscopically homogeneous membranes suggests the presence of LPS clusters with dimensions below our microscope's resolution (∼380 nm radial). Our results indicate that LPSs can cluster into gel-like domains in these bacterial model membranes, and that the size of these domains depends on the chemical structure and concentration of the LPSs.  相似文献   

7.
Most of the completely sequenced prokaryotic genomes contain genes of potassium channel homologues, but there is still not much known about the role of these proteins in prokaryotes. Here we describe the large-scale overproduction and purification of a prokaryotic voltage-gated potassium channel homologue, Kch, from Escherichia coli. After successful overproduction of the protein, a specific increase in the potassium permeability of the cells was found. Kch could be purified in large amounts using classical purification methods to prevent aggregation of the protein. The physiological state of the protein was revealed to be a homotetramer and the protein was shown to be localized to the cytoplasmic membrane of the cells. In the course of the localization studies, we found a specific increase in the density of the cytoplasmic membrane on Kch production. This was linked to the observed increase in the protein to lipid ratio in the membranes. Another observed change in the membrane composition was an increase in the cardiolipin to phosphatidylglycerol ratio, which may indicate a specific cardiolipin requirement of Kch. On the basis of some of our results, we discuss a function for Kch in the maintenance of the membrane potential in E. coli.  相似文献   

8.
We have investigated the stability of giant unilamellar vesicles (GUVs) and large unilamellar vesicles (LUVs) of lipid membranes in the liquid-ordered phase (lo phase) against a detergent, Triton X-100. We found that in the presence of high concentrations of Triton X-100, the structure of GUVs and LUVs of dipalmitoyl-PC (DPPC)/cholesterol (chol) and sphingomyelin (SM)/chol membranes in the lo phase was stable and no leakage of fluorescent probes from the vesicles occurred. We also found that ether-linked dihexadecylphosphatidylcholine (DHPC) membranes containing more than 20 mol% cholesterol were in the lo phase, and that DHPC/chol-GUV and DHPC/chol-LUV in the lo phase were stable and no leakage of internal contents occurred in the presence of Triton X-100. In contrast, octylglucoside solution could easily break these GUVs and LUVs of the lo phase membranes and induced internal contents leakage. These data indicate that GUVs and LUVs of the lo phase membranes are very valuable for practical use.  相似文献   

9.
We have systematically investigated the effect of aggregation of a transmembrane peptide on its diffusion in dimyristoylphosphatidylcholine and in palmitoyloleoylphosphatidylcholine model membranes. The hydrophobic segment of the b subunit from E. coli F(1)F(0)-ATP synthase was modified with a histidine tag at the carbonyl terminus and was aggregated selectively by using a series of multivalent, dendritic chelating agents with nitrilotriacetic acid functional groups. Peptide complexes ranging from monomers to hexamers were formed and studied in giant unilamellar vesicles. The rate of diffusion for the transmembrane peptide complexes were found to depend on the size of the complex. The results agree with predictions from the free area model for monomers and dimers, and the hydrodynamic continuum model for tetramers, pentamers, and hexamers. Comparisons with diffusion of lipids confirm that the diffusion of a transmembrane peptide is enhanced by coupling of density fluctuations between the two monolayers.  相似文献   

10.
We suggest a novel approach for direct optical microscopy observation of DNA interaction with the bilayers of giant cationic liposomes. Giant unilamellar vesicles, about 100 μm in diameter, made of phosphatidylcholines and up to 33 mol% of the natural bioactive cationic amphiphile sphingosine, were obtained by electroformation. “Short” DNAs (oligonucleotide 21b and calf thymus 250 bp) were locally injected by micropipette to a part of the giant unilamellar vesicle (GUV) membrane. DNAs were injected native, as well as marked with a fluorescent dye. The resulting membrane topology transformations were monitored in phase contrast, while DNA distribution was followed in fluorescence. We observed DNA-induced endocytosis due to the DNA/lipid membrane local interactions and complex formation. A characteristic minimum concentration (C endo) of d-erythro-sphingosine (Sph+) in the GUV membrane was necessary for the endocytic phenomenon to occur. Below C endo, only lateral adhesions between neighboring vesicles were observed upon DNA local addition. C endo depends on the type of zwitterionic (phosphocholine) lipid used, being about 10 mol% for DPhPC/Sph+ GUVs and about 20 mol% for SOPC/Sph+ or eggPC/Sph+ GUVs. The characteristic sizes and shapes of the resulting endosomes depend on the kind of DNA, and initial GUV membrane tension. When the fluorescent DNA marker dye was injected after the DNA/lipid local interaction and complex formation, no fluorescence was detected. This observation could be explained if one assumes that the DNA is protected by lipids in the DNA/lipid complex, thereby inaccessible for the dye molecules. We suggest a possible mechanism for DNA/lipid membrane interaction involving DNA encapsulation within an inverted micelle included in the lipid membrane. Our model observations could help in understanding events associated with the interaction of DNA with biological membranes, as well as cationic liposomes/DNA complex formation in gene transfer processes. Received: 18 April 1998 / Revised version: 6 August 1998 / Accepted: 7 August 1998  相似文献   

11.
In this work, we present a protocol to reconstitute membrane proteins into giant unilamellar vesicles (GUV) via peptide-induced fusion. In principle, GUV provide a well-defined lipid matrix, resembling a close-to-native state for biophysical studies, including optical microspectroscopy, of transmembrane proteins at the molecular level. Furthermore, reconstitution in this manner would also eliminate potential artifacts arising from secondary interactions of proteins, when reconstituted in planar membranes supported on solid surfaces. However, assembly procedures of GUV preclude direct reconstitution. Here, for the first time, a method is described that allows the controlled incorporation of membrane proteins into GUV. We demonstrate that large unilamellar vesicles (LUV, diameter 0.1 microm), to which the small fusogenic peptide WAE has been covalently attached, readily fuse with GUV, as revealed by monitoring lipid and contents mixing by fluorescence microscopy. To monitor contents mixing, a new fluorescence-based enzymatic assay was devised. Fusion does not introduce changes in the membrane morphology, as shown by fluorescence correlation spectroscopy. Analysis of fluorescence confocal imaging intensity revealed that approximately 6 to 10 LUV fused per microm(2) of GUV surface. As a model protein, bacteriorhodopsin (BR) was reconstituted into GUV, using LUV into which BR was incorporated via detergent dialysis. BR did not affect GUV-LUV fusion and the protein was stably inserted into the GUV and functionally active. Fluorescence correlation spectroscopy experiments show that BR inserted into GUV undergoes unrestricted Brownian motion with a diffusion coefficient of 1.2 microm(2)/s. The current procedure offers new opportunities to address issues related to membrane-protein structure and dynamics in a close-to-native state.  相似文献   

12.
The use of giant unilamellar vesicles (GUVs) for investigating the properties of biomembranes is advantageous compared to the use of small-sized vesicles such as large unilamellar vesicles (LUVs). Experimental methods using GUVs, such as the single GUV method, would benefit if there was a methodology for obtaining a large population of similar-sized GUVs composed of oil-free membranes. We here describe a new membrane filtering method for purifying GUVs prepared by the natural swelling method and demonstrate that, following purification of GUVs composed of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes suspended in a buffer, similar-sized GUVs with diameters of 10–30 μm are obtained. Moreover, this method enabled GUVs to be separated from water-soluble fluorescent probes and LUVs. These results suggest that the membrane filtering method can be applied to GUVs prepared by other methods to purify larger-sized GUVs from smaller GUVs, LUVs, and various water-soluble substances such as proteins and fluorescent probes. This method can also be used for concentration of dilute GUV suspensions.  相似文献   

13.
After channel activation, and in some cases with sub-threshold depolarizing stimuli, Kv channels undergo a time-dependent loss of conductivity by a family of mechanisms termed inactivation. To date, all identified inactivation mechanisms underlying loss of conduction in Kv channels appear to be distinct from deactivation, i.e. closure of the voltage-operated activation gate by changes in transmembrane voltage. Instead, Kv channel inactivation entails entry of channels into a stable, non-conducting state, and thereby functionally reduces the availability of channels for opening. That is, if a channel has inactivated, some time must expire after repolarization of the membrane voltage to allow the channel to recover and become available to open again. Dramatic differences between Kv channel types in the time course of inactivation and recovery underlie various roles in regulating cellular excitability and repolarization of action potentials. Therefore, the range of inactivation mechanisms exhibited by different Kv channels provides important physiological means by which the duration of action potentials in many excitable tissues can be regulated at different frequencies and potentials. In this review, we provide a detailed discussion of recent work characterizing structural and functional aspects of Kv channel gating, and attempt to reconcile these recent results with classical experimental work carried out throughout the 1990s that identified and characterized the basic mechanisms and properties of Kv channel inactivation. We identify and discuss numerous gaps in our understanding of inactivation, and review them in the light of new structural insights into channel gating.  相似文献   

14.
Giant Unilamellar Vesicles (GUVs) provide a key model membrane system to study lipid-lipid and lipid-protein interactions, which are relevant to vital cellular processes, by (single-molecule) optical microscopy. Here, we review the work on reconstitution techniques for membrane proteins and other preparation methods for developing GUVs towards most suitable close-to-native membrane systems. Next, we present a few applications of protein-containing GUVs to study domain assembly and protein partitioning into raft-like domains.  相似文献   

15.
16.
BACKGROUND: The voltage-gated potassium channel Shaker from Drosophila consists of a tetramer of identical subunits, each containing six transmembrane segments. The atomic structure of a bacterial homolog, the potassium channel KcsA, is much smaller than Shaker. It does not have a voltage sensor and other important domains like the N-terminal tetramerization (T1) domain. The structure of these additional elements has to be studied in the more complex voltage-gated channels. RESULTS: We determined the three-dimensional structure of the entire Shaker channel at 2.5 nm resolution using electron microscopy. The four-fold symmetric structure shows a large and a small domain linked by thin 2 nm long connectors. To interpret the structure, we used the crystal structures of the isolated T1 domain and the KcsA channel. A unique density assignment was made based on the symmetry and dimensions of the crystal structures and domains, identifying the smaller domain as the cytoplasmic mass of Shaker containing T1 and the larger domain as embedded in the membrane. CONCLUSIONS: The two-domain architecture of the Shaker channel is consistent with the recently proposed "hanging gondola" model for the T1 domain, putting the T1 domain at a distance from the membrane domain but attached to it by thin connectors. The space between the two domains is sufficient to permit cytoplasmic access of ions and the N-terminal inactivation domain to the pore region. A hanging gondola architecture has also been observed in the nicotinic acetylcholine receptor and the KcsA structure, suggesting that it is a common element of ion channels.  相似文献   

17.
Lanthanides such as La3+ and Gd3+ are well known to have large effects on the function of membrane proteins such as mechanosensitive ionic channels and voltage-gated sodium channels, and also on the structure of phospholipid membranes. In this report, we have investigated effects of La3+ and Gd3+ on the shape of giant unilamellar vesicle (GUV) of dioleoylphosphatidylcholine (DOPC-GUV) and GUV of DOPC/cholesterol by the phase-contrast microscopy. The addition of 10-100 μM La3+ (or Gd3+) through a 10-μm diameter micropipette near the DOPC-GUV (or DOPC/cholesterol-GUV) triggered several kinds of shape changes. We have found that a very low concentration (10 μM) of La3+ (or Gd3+) induced a shape change of GUV such as the discocyte via stomatocyte to inside budded shape transformation, the two-spheres connected by a neck to prolate transformation, and the pearl on a string to cylinder (or tube) transformation. To understand the effect of these lanthanides on the shape of the GUV, we have also investigated phase transitions of 30 μM dipalmitoylphosphatidylcholine-multilamellar vesicle (DPPC-MLV) by the ultra-sensitive differential scanning calorimetry (DSC). The chain-melting phase transition temperature and the Lβ′ to Pβ′ phase transition temperature of DPPC-MLV increased with an increase in La3+ concentration. This result indicates that the lateral compression pressure of the membrane increases with an increase in La3+ concentration. Thereby, the interaction of La3+ (or Gd3+) on the external monolayer membrane of the GUV induces a decrease in its area (Aex), whereas the area of the internal monolayer membrane (Ain) keeps constant. Therefore, the shape changes of the GUV induced by these lanthanides can be explained reasonably by the decrease in the area difference between two monolayers (ΔA=AexAin).  相似文献   

18.
Giant unilamellar vesicles (GUVs) are simple model membrane systems of cell-size, which are instrumental to study the function of more complex biological membranes involving heterogeneities in lipid composition, shape, mechanical properties, and chemical properties. We have devised a method that makes it possible to prepare a uniform sample of ternary GUVs of a prescribed composition and heterogeneity by mixing different populations of small unilamellar vesicles (SUVs). The validity of the protocol has been demonstrated by applying it to ternary lipid mixture of DOPC, DPPC, and cholesterol by mixing small unilamellar vesicles (SUVs) of two different populations and with different lipid compositions. The compositional homogeneity among GUVs resulting from SUV mixing is quantified by measuring the area fraction of the liquid ordered–liquid disordered phases in giant vesicles and is found to be comparable to that in GUVs of the prescribed composition produced from hydration of dried lipids mixed in organic solvent. Our method opens up the possibility to quickly increase and manipulate the complexity of GUV membranes in a controlled manner at physiological buffer and temperature conditions. The new protocol will permit quantitative biophysical studies of a whole new class of well-defined model membrane systems of a complexity that resembles biological membranes with rafts.  相似文献   

19.
Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.  相似文献   

20.
The interaction of dynamin II with giant unilamellar vesicles was studied using two-photon fluorescence microscopy. Dynamin II, labeled with fluorescein, was injected into a microscope chamber containing giant unilamellar vesicles, which were composed of either pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or a mixture of POPC and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Binding of the fluorescent dynamin II to giant unilamellar vesicles, in the presence and absence of PI(4,5)P2, was directly observed using two-photon fluorescence microscopy. This binding was also visualized using the fluorescent N-methylanthraniloyl guanosine 5-[-thio]triphosphate analogue. The membrane probe 6-dodecanoyl-2-dimethylamine-naphthalene was used to monitor the physical state of the lipid in the giant unilamellar vesicles in the absence and presence of dynamin. A surprising finding was the fact that dynamin II bound to vesicles in the absence of PI(4,5)P2. Activation of the GTPase activity of dynamin II by pure POPC was then shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号