首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recombinant chromosome in a male affected with X-linked congenital stationary night blindness (CSNB1) provides new information on the location of the CSNB1 locus. A four-generation family with five males affected with X-linked CSNB was analyzed with five polymorphic markers for four X-chromosome loci spanning the region OTC (Xp21.1) to DXS255 (Xp11.22). Four of the males inherited the same X chromosome; one male inherited a chromosome that from OTC to DXS7, inclusive, was derived from the normal X chromosome of his unaffected grandfather and that from a location between DXS7 and DXS426 proximally was derived from the chromosome carrying the CSNB1 locus. This recombinant maps the CSNB1 locus in this family to a region on the short arm of the X chromosome proximal to the DXS7 locus.  相似文献   

2.
Although familial recurrences of Rett syndrome (RTT) comprise only approximately 1% of the reported cases, it is these cases that hold the key for the understanding of the genetic basis of the disorder. Families in which RTT occurs in mother and daughter, aunt and niece, and half sisters are consistent with dominant inheritance and variable expressivity of the phenotype. Recurrence of RTT in sisters is likely due to germ-line mosaicism in one of the parents, rather than to recessive inheritance. The exclusive occurrence of classic RTT in females led to the hypothesis that it is X-linked and may be lethal in males. In an X-linked dominant disorder, unaffected obligate-carrier females would be expected to show nonrandom or skewed inactivation of the X chromosome bearing the mutant allele. We investigated the X chromosome inactivation (XCI) patterns in the female members of a newly identified family with recurrence of RTT in a maternal aunt and a niece. Skewing of XCI is present in the obligate carrier in this family, supporting the hypothesis that RTT is an X-linked disorder. However, evaluation of the XCI pattern in the mother of affected half sisters shows random XCI, suggesting germ-line mosaicism as the cause of repeated transmission in this family. To determine which regions of the X chromosome were inherited concordantly/discordantly by the probands, we genotyped the individuals in the aunt-niece family and two previously reported pairs of half sisters. These combined exclusion-mapping data allow us to exclude the RTT locus from the interval between DXS1053 in Xp22.2 and DXS1222 in Xq22.3. This represents an extension of the previous exclusion map.  相似文献   

3.
Linkage analysis in X-linked congenital stationary night blindness.   总被引:4,自引:0,他引:4  
X-linked congenital stationary night blindness (XL-CSNB) is a nonprogressive disorder of the retina, characterized by night blindness, reduced visual acuity, and myopia. Previous studies have localized the CSNB1 locus to the region between OTC and TIMP on the short arm of the X chromosome. We have carried out linkage studies in three XL-CSNB families that could not be classified as either complete or incomplete CSNB on the criteria suggested by Miyake et al. (1986. Arch. Ophthalmol. 104: 1013-1020). We used markers for the DXS538, DMD, OTC, MAOA, DXS426, and TIMP loci. Two-point analyses show that there is close linkage between CSNB and MAOA (theta max = 0.05, Zmax = 3.39), DXS426 (theta max = 0.06, Zmax = 2.42), and TIMP (theta max = 0.07, Zmax = 2.04). Two multiply informative crossovers are consistent with CSNB lying proximal to MAOA and distal to DXS426, respectively. Multipoint analysis supports this localization, giving the most likely order as DMD-17 cM-MAOA-7.5 cM-CSNB-7.5 cM-DXS426/TIMP-cen, and thus refines the localization of CSNB.  相似文献   

4.
A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538 and 5'-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified.  相似文献   

5.
X-linked congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by impaired night vision, variably involving high myopia, nystagmus, decreased visual acuity, and strabismus. Linkage studies have identified two distinct loci for X-linked CSNB1 and CSNB2 on the short arm of chromosome X. The gene mutated in families displaying the "incomplete phenotype" of CSNB (i.e., CSNB2) has recently been identified. To identify novel candidate genes for the "complete form" of CSNB (i.e., CSNB1) we screened the physically vast region Xp11.3-Xp11.4 for cDNA sequences. This led us to identify and map the G protein coupled receptor (GPCR) gene GPR34 to Xp11.4 within 650 kb of the marker DXS993. Deletion screening via Southern blotting and direct sequencing of GPR34 revealed no mutations in 19 unrelated men with CSNB1, excluding a causal role in the disease. However, because of its expression in retinal and neural tissue and the involvement of GPCRs in transmembrane signal transduction, GPR34 remains a putative candidate gene for a number of ocular diseases which also map to the Xp11.4 region.  相似文献   

6.
X-linked congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by a presumptive defect of neurotransmission between the photoreceptor and bipolar cells. Carriers are not clinically detectable. A new classification for CSNB includes a complete type, which lacks rod function by electroretinography and dark adaptometry, and an incomplete type, which shows some rod function on scotopic testing. The refraction in the complete CSNB patients ranges from mild to severe myopia; the incomplete ranges from moderate hyperopia to moderate myopia. To map the gene responsible for this disease, we studied eight multigeneration families, seven with complete CSNB (CSNB1) and one with incomplete CSNB, by linkage analysis using 17 polymorphic X-chromosome markers. We found tight genetic linkage between CSNB1 and an Xp11.3 DNA polymorphic site, DXS7, in seven families with CSNB1 (LOD 7.35 at theta = 0). No recombinations to CSNB1 were found with marker loci DXS7 and DXS14. The result with DXS14 may be due to the small number of scored meioses (10). No linkage could be shown with Xq loci PGK, DXYS1, DXS52, and DXS15. Pairwise linkage analysis maps the gene for CSNB1 at Xp11.3 and suggests that the CSNB1 locus is distal to another Xp11 marker, TIMP, and proximal to the OTC locus. Five-point analysis on the eight families supported the order DXS7-CSNB1-TIMP-DXS225-DXS14. The odds in favor of this order were 9863:1. Removal of the family with incomplete CSNB (F21) revealed two most favored orders, DXS7-CSNB1-TIMP-DXS255-DXS14 and CSNB1-DXS7-TIMP-DXS255-DXS14. Heterogeneity testing using the CSNB1-M27 beta and CSNB1-TIMP linkage data (DXS7 was not informative in F21) was not significant to support evidence of genetic heterogeneity (P = 0.155 and 0.160, respectively).  相似文献   

7.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive genetic disease in which the basic molecular defect is unknown. We previously located the WAS gene between two DNA markers, DXS7 (Xp11.3) and DXS14 (Xp11), and mapped it to the proximal short arm of the human X chromosome (Kwan et al., 1988, Genomics 3:39-43). In this study, further mapping was performed on 17 WAS families with two additional RFLP markers, TIMP and DXS255. Our data suggest that DXS255 is closer to the WAS locus than any other markers that have been previously described, with a multipoint maximum lod score of Z = 8.59 at 1.2 cM distal to DXS255 and thus further refine the position of the WAS gene on the short arm of the X chromosome. Possible locations for the WAS gene are entirely confined between TIMP (Xp11.3) and DXS255 (Xp11.22). Use of these markers thus represents a major improvement in genetic prediction in WAS families.  相似文献   

8.
A genomic DNA clone named CRI-S232 reveals an array of highly polymorphic restriction fragments on the X chromosome as well as a set of non-polymorphic fragments on the Y chromosome. Every individual has multiple bands, highly variable in length, in every restriction enzyme digest tested. One set of bands is found in all males, and co-segregates with the Y chromosome in families. These sequences have been regionally localized by deletion mapping to the long arm of the Y chromosome. Segregation analysis in families shows that all of the remaining fragments co-segregate as a single locus on the X chromosome, each haplotype consisting of three or more polymorphic fragments. This locus (designated DXS278) is linked to several markers on Xp, the closest being dic56 (DXS143) at a distance of 2 cM. Although it is outside the pseudoautosomal region, the S232 X chromosome locus shows linkage to pseudoautosomal markers in female meiosis. In determining the X chromosome S232 haplotypes of 138 offspring among 19 families, we observed three non-parental haplotypes. Two were recombinant haplotypes, consistent with a cross-over among the S232-hybridizing fragments in maternal meiosis. The third was a mutant haplotype arising on a paternal X chromosome. The locus identified by CRI-S232 may therefore be a recombination and mutation hotspot.  相似文献   

9.
Summary We report a large Italian pedigree in which five out of six males are affected by a syndrome, following an X-linked inheritance pattern, characterized by ichthyosis, hypogonadotropic hypogonadism, and anosmia. The concurrence of features of X-linked ichthyosis (XLI) with those of Kallmann syndrome, another disease often inherited as an X-linked trait, prompted us to perform biochemical, cytogenetic, and molecular studies in relation to the short arm of the X chromosome (Xp). Steroid sulphatase (STS) activity was found to be completely deficient in all affected members of the family. Prometaphase chromosome analyses of two obligate heterozygous women and one affected male showed normal karyotypes. Xg blood group antigen analysis and molecular studies employing cloned DNA sequences from the distal segment of the Xp (probes RC8, 782, dic56, and M1A), did not provide evidence for deletions or rearrangements of the X chromosome. The linkage analysis showed no crossovers between the disease, Xg, and DXS 143, the locus defined by probe dic56, thus suggesting the possibility of a linkage between these two markers of the distal segment of Xp and the X-linked ichthyosis, hypogonadism, and anosmia syndrome.  相似文献   

10.
Rett syndrome is a neurologic disorder characterized by early normal development followed by regression, acquired deceleration of head growth, autism, ataxia, and stereotypic hand movements. The exclusive occurrence of the syndrome in females and the occurrence of a few familial cases with inheritance through maternal lines suggest that this disorder is most likely secondary to a mutation on the X chromosome. To address this hypothesis and to identify candidate regions for the Rett syndrome gene locus, genotypic analysis was performed in two families with maternally related affected half-sisters by using 63 DNA markers from the X chromosome. Maternal and paternal X chromosomes from the affected sisters were separated in somatic cell hybrids and were examined for concordance/discordance of maternal alleles at the tested loci. Thirty-six markers were informative in at least one of the two families, and 25 markers were informative in both families. Twenty loci were excluded as candidates for the Rett syndrome gene, on the basis of discordance for maternal alleles in the half-sisters. Nineteen of the loci studied were chosen for multipoint linkage analysis because they have been previously genetically mapped using a large number of meioses from reference families. Using the exclusion criterion of a lod score less than -2, we were able to exclude the region between the Duchenne muscular dystrophy locus and the DXS456 locus. This region extends from Xp21.2 to Xq21-q23. The use of the multipoint linkage analysis approach outlined in this study should allow the exclusion of additional regions of the X chromosome as new markers are analyzed. This in turn will result in a defined region of the X chromosome that should be searched for candidate sequences for the Rett syndrome gene in both familial and sporadic cases.  相似文献   

11.
Summary Linkage between X-linked congenital stationary night blindness (CSNB1) and seven markers on the X chromosome was investigated in a large four-generation Albertan kindred. We detected significant linkage between the CSNB1 locus and the locus DXS255 (maximum lod score = 6.73 at a recombination fraction of 6%; confidence interval of 1% to 18%), which anchors the CSNB1 locus to the proximal region near p11.22 on the short arm of the X chromosome.  相似文献   

12.
Duplication within Xp21 causes female or intersexual development in human embryos with an XY chromosome complement. We have mapped the responsible gene, SRVX (sex reversal X), in XY-sex-reversed maternal half siblings who had inherited the duplication from their mother. The limited size of the duplication in our cases, relative to its extent in other similar cases, allows assignment of the SRVX locus to Xp21.2p22.11. We infer that SRVX is part of a pathway of sex-determining genes that includes SRY and SRA1, the latter recently assigned to chromosome 17q. If mutation of SRA1 or SRVX can reverse the sex of the XY fetus, this would explain why mutation within SRY is found only sporadically in women with XY gonadal dysgenesis.  相似文献   

13.
Aland eye disease: linkage data   总被引:4,自引:0,他引:4  
M Schwartz  T Rosenberg 《Genomics》1991,10(2):327-332
A large Danish family with Aland Island eye disease (AIED) was studied by linkage analysis using 16 polymorphic DNA markers covering the whole X chromosome. Positive lod scores were found for marker loci at the proximal part of the short arm of the X chromosome, DXS255 and TIMP (Zmax = 3.93 and 3.18 at theta = 0.0), suggesting an assignment of the locus for AIED to this part of the X chromosome. Recombination was observed with the locus DXS7 as well as with other loci distal to DXS7. These results are not in agreement with the deletion presented previously by D-A. M. Pillers et al. (1990, Am. J. Med. Genet. 36: 23-28), which mapped AIED to Xp21.  相似文献   

14.
FG syndrome (FGS, MIM 305450) is a rare X-linked recessive disorder comprising mental retardation and multiple malformations. Various families have been described to date, increasing our knowledge of the phenotype variability and making the clinical diagnosis complex, especially in sporadic patients. The first locus for FG syndrome (FGS1) was linked to chromosome region Xq12-q21.31, but other families have been excluded from this locus. The genetic heterogeneity of FG syndrome has been confirmed by analysis of an X chromosome inversion [inv(X)(q11q28)] in an affected boy and in his mentally retarded maternal uncle, suggesting that an additional locus for FG syndrome (FGS2, MIM 300321) is located at either Xq11 or Xq28. Recently, a third locus (FGS3) has been mapped to Xp22.3. We have identified and clinically characterized an Italian FG family, including 31 members with three affected males in two generations and two obligate carriers. We have excluded linkage to known FGS loci, whereas an extensive study of the whole X chromosome has yielded a maximum LOD score (Z(max)) of 2.66 (recombination fraction=0) for markers between DXS8113 and sWXD805. This new locus for FG syndrome corresponds to a region of approximately 4.6 Mb on the X chromosome.  相似文献   

15.
An autosomal recessive (AR) form of muscular dystrophy that clinically resembles Duchenne/Becker types exists, but its frequency is unknown. We have studied three unrelated affected brother/sister pairs and their families for deletions and polymorphisms with the entire dystrophin cDNA and other DNA probes from the Xp21 region to test for involvement of the DMD locus. In family 1 a large intragenic deletion was found in the affected male. The affected sister was heterozygous for this deletion, but the mother was not, implying germinal mosaicism. In family 2, no deletion was detected in the affected male. RFLP analysis revealed that the affected male and an unaffected sister shared a complete Xp21 haplotype while the affected sister had inherited a recombinant Xp21 region resulting from a crossover between pERT 87-15 and J-Bir. Only the 5' region of the dystrophin gene was shared with the affected boy. X-inactivation studies using a polymorphism in the 5'-flanking region of the HPRT gene, in conjunction with methylation-sensitive enzymes, revealed random X inactivation in the affected girl's leukocytes. In a muscle biopsy from the affected male, the dystrophin protein was present in normal amount and size. Family 3 was informative for four RFLPs detected with dystrophin cDNA probes which span the entire gene. The affected male was found to share the complete dystrophin RFLP haplotype with his unaffected brother, while his affected sister had inherited the other maternal haplotype. It is concluded that the clinical presentation of early-onset, progressive muscular dystrophy in a male and in his karyotypically normal sister can be caused by mutations at different loci. While in family 1 a deletion in the dystrophin gene is responsible, this gene does not appear to be involved in families 2 and 3.  相似文献   

16.
Cytogenetic and molecular analysis of sex-chromosome monosomy.   总被引:16,自引:4,他引:12       下载免费PDF全文
X chromosome- and Y chromosome-specific DNA probes were used to study different aspects of the genesis of sex-chromosome monosomy. Using X-linked RFLPs, we studied the parental origin of the single X chromosome in 35 spontaneously aborted and five live-born 45,X conceptions. We determined the origin in 35 cases; 28 had a maternal X (Xm) and seven had a paternal X (Xp). There was a correlation between parental origin and parental age, with the Xp category having a significantly reduced mean maternal age by comparison with the Xm group. Studies aimed at detecting mosaicism demonstrated the presence of a Y chromosome or a second X chromosome in three of 33 spontaneous abortions, a level of mosaicism much lower than that reported for live-born Turner syndrome individuals.  相似文献   

17.
A significant skewing in the sex ratio in favour of females has been reported for the families of homosexual men such that there are fewer maternal uncles than aunts. This finding is repeated for a large series of transsexual families in this study. Four hundred and seventeen male-to-female transsexuals and 96 female-to-male transsexuals were assessed. Male-to-female transsexuals have a significant excess of maternal aunts vs. uncles. No differences from the expected parity were found for female-to-male transsexuals or on the paternal side. A posited explanation for these findings invokes X inactivation and genes on the X chromosome that escape inactivation but may be imprinted. Our hypothesis incorporates the known familial traits in the families of homosexuals and transsexuals by way of retention of the grand parental epigenotype on the X chromosome. Generation one would be characterized by a failure to erase the paternal imprints on the paternal X chromosome. Daughters of this second generation would produce sons that are XpY and XmY. Since XpY expresses Xist, the X chromosome is silenced and half of the sons are lost at the earliest stages of pregnancy because of the normal requirement for paternal X expression in extra-embryonic tissues. Females survive by virtue of inheriting two X chromosomes, and therefore the possibility of X chromosome counting and choice during embryonic development. In generation three, sons inheriting the paternal X after its second passage through the female germline survive, but half would inherit the feminizing Xp imprinted genes. These genes could pre-dispose the sons to feminization and subsequent development of either homosexuality or transsexualism.  相似文献   

18.
We report a high-resolution genetic linkage map of the region Xp11.4 to Xq13.3, spanning the centromere of the X chromosome and encompassing approximately 30 cM. This 18-locus map is composed of 11 intervals that are spaced on average about 3 cM apart. Markers incorporated into the map together detect 19 distinct polymorphisms and include five genes (TIMP, SYP, AR, CCG1, PGK1), the OATL1 cluster, the hypervariable locus DXS255, the centromeric locus DXZ1, and 10 other anonymous DNA segments. Given that this map spans roughly one-fifth of the length of the X chromosome and includes many loci currently used in both diagnosis and mapping of X-linked disorders, it should be useful for genetic counseling and for guiding efforts to clone disease genes in this region.  相似文献   

19.
The inheritance of two restriction fragment length polymorphisms (RFLPs) on the short arm of the human X chromosome has been studied relative to Duchenne muscular dystrophy. This provides a partial genetic map of the short arm of the human X chromosome between Xp110 and Xp223. The data were derived from the segregation between a RFLP located at Xp21-Xp223, the DMD locus, and a RFLP located at Xp110-Xp113. The genetic distance from Xp110 to Xp223 was found to be approximately 40 centimorgans (cM). This provides experimental confirmation that 1cM corresponds to approximately 1,000 kilobase pairs of DNA for this region of the human X chromosome. Our data confirm that the DMD mutation lies between Xp223 and Xp110. The availability of flanking probes surrounding the DMD locus will assist in the ordering of further DNA sequences relative to the mutation.  相似文献   

20.
Congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by night blindness, nystagmus, myopia, a variable decrease in visual acuity, an abnormal electroretinographic response, and a disturbance in dark adaptation. Two forms of X-linked CSNB have been defined, complete CSNB in which rod function is extinguished, and incomplete CSNB in which rod function is reduced but not extinguished, as seen by electroretinography and dark adaptometry. In studying a large family of Mennonite ancestry, we have confirmed linkage between the locus (CSNB2) for incomplete CSNB and genetic markers in the Xp11 region. In particular, lod scores of 12.25 and 15.26 at zero recombination were observed between CSNB2 and the markers DXS573 and DXS255. Detailed analysis of critical recombinant chromosomes in this extended family have refined the minimal region for the CSNB2 locus to the interval between DXS6849 and DXS8023 in Xp11.23. Received: 5 November 1997 / Accepted: 23 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号