首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since hydrogen cyanide is a component of Titan's hazy atmosphere, HCN polymers might also be present by way of a low energy pathway leading initially to the synthesis of polyaminomalonitrile. Subsequent reactions of HCN with the activated nitrile groups of this HCN homopolymer would then yield heteropolyamidines, readily converted to heteropolypeptides following contact with frozen water on the surface of Titan.Similar HCN polymers in the reducing atmospheres of Jupiter and Saturn could be major contributors to the yellow-brown-orange appearance of these giant planets.Any detection of such HCN chemistry by the Voyager missions or the pending Galileo probe would constitute evidence for the hypothesis that heteropolypeptides on the primitive Earth were synthesized directly from hydrogen cyanide and water without the intervening formation of -amino acids.Paper presented at the 6th College Park Colloquium, October 1981.  相似文献   

2.
Cross-polarization magic-angle spinning15NMR spectra have been used to determine the composition of hydrogen cyanide polymers both before and after treatment with water. The unambiguous presence of secondary amide groups (as in peptide links) has been established by double-cross-polarization studies on the polymers synthesized from equimolar amounts of H13CN and HC15N. The NMR results are consistent with the hypothesis that the original heteropolypeptides on Earth were synthesized directly from hydrogen cyanide and water without the intervening formation of -amino acids.  相似文献   

3.
In the presence of a base such as ammonia liquid HCN (bp 25 °C) polymerizes readily to a black solid from which a yellow-brown powder can be extracted by water and further hydrolyzed to yield-amino acids. These macromolecules could be major components of the dark matter observed on many bodies in the outer solar system. The non-volatile black crust of comet Halley, for example, may consist largely of such polymers, since the original presence on cometary nuclei of frozen volatiles such as methane, ammonia, and water makes them possible sites for the formation and condensed-phase polymerization of hydrogen cyanide. It seems likely, too, that HCN polymers are among the dark —CN bearing solids identified spectroscopically by Cruikshanket al. in the dust of some other comets, on the surfaces of several asteroids of spectral class D, within the rings of Uranus, and covering the dark hemisphere of Saturn's satellite Iapetus. HCN polymerization could account also for the yellow-orange-brown coloration of Jupiter and Saturn, as well as for the orange haze high in Titan's atmosphere. Implications for prebiotic chemistry are profound. Primitive Earth may have been covered by HCN polymers through cometary bombardment or terrestrial synthesis, producing a proteinaceous matrix that promoted the molecular interactions leading to the emergence of life.  相似文献   

4.
During the course of in vitro studies on cyanide exposure with SH-SY5Y human neuroblastoma cells, we found that sodium cyanide (NaCN) up to a concentration of 10 mM had no significant toxic effect under our culture conditions. Further investigation of this apparent cyanide resistance revealed that the sodium cyanide was being rapidly depleted from the cell culture medium. Cyanide was interacting with constituents of the cell culture medium and was somehow being detoxified or removed from solution. The reaction of cyanide with cell culture media in 96-well culture plates reduced cyanide concentrations rapidly (80-90% in 2 h at 37 degrees C). Running the same reaction in capped tubes significantly reduced cyanide loss from solution. Incubation of cyanide with individual constituents of the cell culture medium in solution showed that glucose, phenol red, and amino acids all acted to detoxify or remove cyanide from solution. When amino acids or buffers were incubated with sodium cyanide in aqueous solution at pH 7.4, hydrogen cyanide (HCN) was found to degas from the solutions. We compared HCN outgassing over a range of pH values. As expected, HCN remained very soluble at high pH, but as the pH was reduced to 7.0, the rate of HCN formation and outgassing increased dramatically. Acid-base reactions involving cyanide and proton donors, such as amino acids and other cell culture media constituents, at physiological pH result in rapid HCN outgassing from solution at 37 degrees C. These results indicate that previous in vitro cyanide toxicity studies done in standard culture media with prolonged incubation times using gas-exchanging culture containers might have to be reevaluated in light of the fact that the effective cyanide concentrations in the culture media were significantly lower than reported.  相似文献   

5.
Rapid and direct screening of nitrile-converting enzymes is of great importance in the development of industrial biocatalytic process for pharmaceuticals and fine chemicals. In this paper, a combination of ferrous and ferric ions was used to establish a novel colorimetric screening method for nitrile hydratase and amidase with α-amino nitriles and α-amino amides as substrates, respectively. Ferrous and ferric ions reacted sequentially with the cyanide dissociated spontaneously from α-amino nitrile solution, forming a characteristic deep blue precipitate. They were also sensitive to weak basicity due to the presence of amino amide, resulting in a yellow precipitate. When amino amide was further hydrolyzed to amino acid, it gave a light yellow solution. Mechanisms of color changes were further proposed. Using this method, two isolates with nitrile hydratase activity towards 2-amino-2,3-dimethyl butyronitrile, one strain capable of hydrating 2-amino-4-(hydroxymethyl phosphiny) butyronitrile and another microbe exhibiting amidase activity against 2-amino-4-methylsulfanyl butyrlamide were obtained from soil samples and culture collections of our laboratory. Versatility of this method enabled it the first direct and inexpensive high-throughput screening system for both nitrile hydratase and amidase.  相似文献   

6.
André Brack 《Bio Systems》1982,15(3):201-207
Aqueous polymerization of p-nitrophenyl esters of proteinaceous α-amino acids is much more efficient in the presence of sodium hydrogen carbonate than in the presence of sodium hydroxide for a given pH. Evidence is presented for the intermediary formation of Leuchs' anhydride in the presence of bicarbonate anions. The prebiotic significance of such a mechanism favouring the polymerization of proteinaceous α-amino acids, i.e. Cα-mono-substituted amino acid, is discussed.  相似文献   

7.
Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid–peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid “glycine (Gly)” to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer–polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive Earth.  相似文献   

8.
It has been suggested that hydrogen cyanide(HCN) would not have been present in sufficient concentrationto polymerize in the primitive ocean to produce nucleic acidbases and amino acids. We have measured the hydrolysis ratesof HCN and formamide over the range of 30–150 °C and pH 0–14,and estimated the steady state concentrations in theprimitive ocean. At 100 °C and pH 8, the steady stateconcentration of HCN and formamide were calculated to be7 × 10-13 M and 1 × 10-15 M, respectively. Thus, itseems unlikely that HCN could have polymerized in a warmprimitive ocean. It is suggested that eutectic freezing mighthave been required to have concentrated HCN sufficiantly forit to polymerize. If the HCN polymerization was important forthe origin of life, some regions of the primitive earth mighthave been frozen.  相似文献   

9.
Kobayashi S  Ishitani H 《Chirality》2000,12(5-6):540-543
A novel binuclear chiral zirconium catalyst was successfully used in enantioselective Strecker reactions. The catalyst was readily prepared from zirconium t-butoxide (Zr(OtBu)4), (R)-6,6'-dibromo-1, 1'-bi-2-naphthol ((R)-6-Br-BINOL), and (R)-3,3'-dibromo-1, 1'-bi-2-naphthol ((R)-3-Br-BINOL) to form unique binuclear structure. It was revealed that a combination of (R)-6-Br-BINOL and (R)-3-Br-BINOL was essential in these asymmetric reactions and that much lower selectivities were obtained by using other combinations. Two-component (an imine and hydrogen cyanide (HCN)) and three-component (an aldehyde, an amine, and HCN) Strecker reactions proceeded smoothly in the presence of a catalytic amount of the chiral zirconium catalyst to afford the corresponding alpha-amino nitrile derivatives in high yields with high enantioselectivities.  相似文献   

10.
Conventional and Alternative Medicine (CAM) is popularly used due to side-effects and failure of approved methods, for diseases like Epilepsy and Cancer. Amygdalin, a cyanogenic diglycoside is commonly administered for cancer with other CAM therapies like vitamins and seeds of fruits like apricots and bitter almonds, due to its ability to hydrolyse to hydrogen cyanide (HCN), benzaldehyde and glucose. Over the years, several cases of cyanide toxicity on ingestion have been documented. In-vitro and in-vivo studies using various doses and modes of administration, like IV administration studies that showed no HCN formation, point to the role played by the gut microbiota for the commonly seen poisoning on consumption. The anaerobic Bacteriodetes phylum found in the gut has a high β-glucosidase activity needed for amygdalin hydrolysis to HCN. However, there are certain conditions under which these HCN levels rise to cause toxicity. Case studies have shown toxicity on ingestion of variable doses of amygdalin and no HCN side-effects on consumption of high doses. This review shows how factors like probiotic and prebiotic consumption, other CAM therapies, obesity, diet, age and the like, that alter gut consortium, are responsible for the varying conditions under which toxicity occurs and can be further studied to set-up conditions for safe oral doses. It also indicates ways to delay or quickly treat cyanide toxicity due to oral administration and, reviews conflicts on amygdalin's anti-cancer abilities, dose levels, mode of administration and pharmacokinetics that have hindered its official acceptance at a therapeutic level.  相似文献   

11.
We investigated the synthesis of α-amino acids under possible prebiotic terrestrial conditions in the presence of dissolved iron (II) in a simulated prebiotic ocean. An aerosol-liquid cycle with a prebiotic atmosphere is shown to produce amino acids via Strecker synthesis with relatively high yields. However, in the presence of iron, the HCN was captured in the form of a ferrocyanide, partially inhibiting the formation of amino acids. We showed how HCN captured as Prussian Blue (or another complex compound) may, in turn, have served as the HCN source when exposed to UV radiation, allowing for the sustained production of amino acids in conjunction with the production of oxyhydroxides that precipitate as by-products. We conclude that ferrocyanides and related compounds may have played a significant role as intermediate products in the prebiotic formation of amino acids and oxyhydroxides, such as those that are found in iron-containing soils and that the aerosol cycle of the primitive ocean may have enhanced the yield of the amino acid production.  相似文献   

12.
The measurement of infrared spectra for cyanide liganded to hemeproteins and hemins has been investigated. The hemeproteins included human methemoglobin A, lamprey methemoglobin, metchlorocruorin, horse metmyoglobin, and horseradish peroxidase. The hemins were dicyanide and monopyridine monocyanide species of deuteroporphyrin IX iron(III) and its 2,4-divinyl(proto) and 2,4-diacetyl derivatives. C-N stretch bands of low intensity detected near 2100 cm-1 exhibit changes in frequency, width, intensity, and isotope shift with changes in cyanide compound structure. Infrared band parameters are particularly sensitive to a change in oxidation state (Fe2+ versus Fe3+) and are affected to a lesser extent by changes in porphyrin ring substituent, ligand trans to the cyanide, and protein structure. Evidence of multiple conformers (i.e. multiple C-N stretch bands) was found for several hemeproteins. The cyanide infrared spectra provide direct evidence for cyanide binding as a metal cyanide (Fe--C identical to N) and against HCN being the ligand in nitrile-like bonding (Fe--N identical to C--H) in all the hemeprotein and hemin cyanides studied. With the reduced horseradish peroxidase cyanide, differences between infrared spectra for D2O and H2O solutions can result from hydrogen bonding between a protein amino acid residue and the distal atom of the cyanide (Fe--C identical to N...H+--R). The binding of cyanide to reduced iron (Fe2+) of a hemeprotein was only observed in the case of the reduced peroxidase. These findings demonstrate that cyanide infrared spectra can not only determine when cyanide is bound to a metalloprotein but can also provide information on how the cyanide is bonded to metal and on characteristics of the ligand binding site.  相似文献   

13.
Experiments used to develop theories of chemical evolution seem to indicate that hydrogen cyanide, HCN, was an important molecule in prebiotic synthesis. In particular, polymerization products of hydrogen cyanide have been found to yield polypeptides upon hydrolysis. The proposed key intermediate in prebiotic synthesis is the aminocyanocarbene isomer of the dimer, either as a 1,3 biradical or as a dipolar singlet structure. Since this molecule has never been successfully isolated and characterized, a quantum mechanical study of various structures of the dieter is carried out using the INDO method. The results indicate that the lowest energy isomer is the iminoacetonitrile, with the aminocyanocarbene being next lowest. The triplet and singlet energy surfaces of the aminocyanocarbene intersect, so that for some geometries the singlet is lower in energy than the triplet, for others the reverse is true. The minima of both surfaces correspond to the linear configuration, with slightly different bond lengths. The triplet state minimum is 8·8 kcal/mol lower in energy than the singlet minimum. The calculated spin density distribution for the ground state of the carbene can be qualitatively described as a 1,3 biradical, in agreement with the early proposal of Kliss &; Matthews. The charge distribution of the singlet at its minimum energy geometry was also calculated. We found the charge separation to be less than that proposed for the dipolar structure of Moser et al. These calculations indicate that while the lowest energy isomer is the iminoacetonitrile, the aminocyanocarbene, the lowest-energy triplet, does have the appropriate spin distribution in its ground state for the biradical polymerization proposed in the theory of chemical evolution of Kliss &; Matthews. Experiments are suggested to determine the nature of the HCN polymerization mechanism, especially in the gas phase. By application of standard techniques used in polymer science, the nature of the gas phase polymerization of HCN can be determined, and the role of such reactions in chemical evolution can be better understood.  相似文献   

14.
氰基耐受型腈水合酶是一类生物催化剂。与普通腈水合酶相比,它能够耐受体系中较高浓度的氰基而不受抑制,从而为α-羟(氨)基酰胺的工业化合成开辟了崭新途径。研究腈水合酶的氰基耐受性机理及提高其耐受能力是目前需要解决的关键问题。综述了腈水合酶受氰基抑制的机制,氰基耐受型腈水合酶的发现以及其在蛋氨酸和2-羟基异丁酰胺生物合成中的应用。同时,对今后氰基耐受型腈水合酶基础、应用研究的思路进行了探讨。  相似文献   

15.
A PCR-based assay targeting hcnAB, essential genes for hydrogen cyanide (HCN) biosynthesis, allowed sensitive detection of HCN(+) pseudomonads between logs 2.9 and 3.5 cells per PCR reaction tube. RFLP analysis revealed 13 allele combinations among selected 2,4-diacetylphloroglucinol-producing (Phl(+))HCN(+), and 13 alleles in Phl(-) HCN(+) strains from a global collection.  相似文献   

16.
Comets have been suggested as a possibly significant source of organic molecules to the early Earth. Hydrogen cyanide (HCN) is important in models of prebiotic chemistry, but may be difficult to form in the early terrestrial environment, while hydrogen isocyanide (HNC) is a `classical' tracer of interstellar ion-molecule chemistry. We have observed both HCN and HNC in 2 recent comets, bringing the number of comets with published measurements of the HNC/HCN abundance ratio to 6. The HNC/HCN ratio in comet Ikeya-Zhang appears to increase with decreasing heliocentric distance, as was previously observed for comet Hale-Bopp, indicating that the HNC is produced at least in part by processes in the cometary coma (atmosphere) and is not simply a constituent of the nuclear ices. Both comets C/2000 WM1 (Linear) and C/2002 C1 (Ikeya-Zhang) exhibit values of the HNC/HCN ratio that appear to be too large (0.09–0.19) tobe matched by current models of coma chemistry. Cometary HNC maybe a photodissociation product of organic grains or large organic polymers stored in the nucleus. We have also set a limit on the emission from the NO radical in comet WM1.  相似文献   

17.
Contact glow discharge electrolyses (CGDE) were carried out relative to the prebiotic formation of amino acids by amination of aliphatic nitrile in aqueous ammoniacal solution, and by cyanization of aliphatic amine by sodium cyanide. The CGDE of propionitrile by amination followed by hydrolysis resulted in the formation of glycine, alanine and β-alanine. The reaction of ethylamine by cyanization, gave glycine, alanine, β-alanine, aspartic acid, and serine. In these reactions, a relatively high ratio of glycine was observed. This could be explained by the cleavage of the α,β-carbon bond, which was broken easily, due to the strong electron-attracting property of the nitrile group of propionitrile and the resulting α-aminopropionitrile.  相似文献   

18.
Easily accessible, primitive chemical structures produced by self-assembly of hydrophobic substances into oil droplets may result in self-moving agents able to sense their environment and move to avoid equilibrium. These structures would constitute very primitive examples of life on the Earth, even more primitive than simple bilayer vesicle structures. A few examples of simple chemical systems are presented that self-organize to produce oil droplets capable of movement, environment remodelling and primitive chemotaxis. These chemical agents are powered by an internal chemical reaction based on the hydrolysis of an oleic anhydride precursor or on the hydrolysis of hydrogen cyanide (HCN) polymer, a plausible prebiotic chemistry. Results are presented on both the behaviour of such droplets and the surface-active properties of HCN polymer products. Such motile agents would be capable of finding resources while escaping equilibrium and sustaining themselves through an internal metabolism, thus providing a working chemical model for a possible origin of life.  相似文献   

19.
20.
The mechanisms of amino acids syntheses behind high temperature shock-waves were elucidated and distinction was made between the steps occurring in the gas phase and those occurring in solution. In the presence of water vapor, aldehydes and NCN are formed separately in regions of different temperatures along the reacting gas. The aldehydes and ammonia condense to aldimines which add HCN to form α-amino nitriles, all in the gas phase. The hydrolysis to amino acids takes place in solution. In the absence of water vapor, aldimines and NCN are formed in the gas phase but condense to α-amino nitriles only in solution. A fair amount of oxygen only lowers the production of amino acids, which consequently could still be produced in the presence of oxygen in the Earth's primitive atmosphere. The waterless mechanism can operate in the Jovian atmosphere and supply it with ample amounts of amino acids, especially aspartic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号