首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dupree  Jeffrey L.  Popko  Brian 《Brain Cell Biology》1999,28(4-5):271-279
The roles that the myelin galactolipids galactocerebroside (GalC) and sulfatide play in cellular differentiation, myelin formation and maintenance have been investigated for nearly 3 decades. During that time the primary approach has been to perturb lipid activity using antibodies and chemical agents in artificial systems. Recently, the isolation of the gene that encodes UDP-galactose:ceramide galactosyltransferase (CGT), the enzyme that catalyzes an essential step in the synthetic pathway of GalC and sulfatide, has enabled the generation of mice that lack myelin galactolipids. These mice display a severe tremor, hindlimb paralysis and electrophysiological defects. In addition, the CGT null mutants exhibit: 1) impaired oligodendrocyte differentiation, 2) myelin sheaths that are thin, incompletely compacted and unstable, and 3) structural abnormalities in the nodal and paranodal regions including disrupted axo-glial junctions. Collectively, these findings suggest that GalC and sulfatide are essential in myelin formation and maintenance, possibly by mediating intra- and intercellular interactions.  相似文献   

2.
We have analyzed mice that lack both the myelin-associated glycoprotein (MAG) and the myelin galactolipids, two glial components implicated in mediating axo-glial interactions during the myelination process. The single-mutant mice produce abnormal myelin containing similar ultrastructural abnormalities, suggesting that these molecules may play an overlapping role in myelin formation. Furthermore, the absence of the galactolipids results in a disruption in paranodal axo-glial interactions, and we show here that similar, albeit less severe, abnormalities exist in the developing MAG mutant. In the double-mutant mice, maintenance of axo-glial adhesion is significantly more affected than in the single mutants, supporting the overlapping function hypothesis. We also show that independently of MAG, galactolipids, and paranodal junctional components, immature nodes of Ranvier form normally, but rapidly destabilize in their absence. These data indicate that distinct molecular mechanisms are responsible for the formation and maintenance of axo-glial interactions.  相似文献   

3.
Myelin sheath formation depends on appropriate axo-glial interactions that are mediated by myelin-specific surface molecules. In this study, we have used quantitative morphological analysis to determine the roles of the prominent myelin lipids galactocerebroside (GalC) and sulfatide in both central and peripheral myelin formation, exploiting mutant mice incapable of synthesizing these lipids. Our results demonstrate a significant increase in uncompacted myelin sheaths, the frequency of multiple cytoplasmic loops, redundant myelin profiles, and Schmidt-Lanterman incisures in the CNS of these mutant mice. In contrast, PNS myelin appeared structurally normal in these animals; however, at post-natal day 10, greater than 10% of the axons withered and pulled away from their myelin sheaths. These results indicate that GalC and sulfatide are critical to the formation of CNS myelin. In contrast, PNS myelin formation is not dependent on these lipids; however, GalC and sulfatide appear to be instrumental in maintaining Schwann cell-axon contact during a specific developmental window.  相似文献   

4.
Myelin partially purified from spinal cords of dysmyelinating mutant (shiverer) mice had almost three-fold the specific activity of 5'-nucleotidase found in the respective myelin fraction from normal mice. The specific activities of two other normally myelin-associated enzymes, 2',3'-cyclic nucleotide-3'-phosphohydrolase and carbonic anhydrase, were only slightly higher in the myelin membranes from shiverers, compared to those from controls. In the mutants, the three enzymes probably occur in oligodendrocyte processes. Hypothetically, the 5'-nucleotidase in the myelin sheath in shiverer and normal mice may be localized in specialized structures.  相似文献   

5.
The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination.  相似文献   

6.
Myelin Galactolipid Synthesis in Different Strains of Mice   总被引:1,自引:0,他引:1  
Previous studies have indicated that the brains of DBA/2J (D2) mice have a more heavily myelinated CNS than those of C57BL/6J (B6) at postnatal days 17-21. However, the amount of myelin in the brains of F1 (B6 X D2) hybrids is even higher than in their parental strains. To investigate further factors involved in regulating myelinogenesis in these mice, we have focused on the synthesis of cerebrosides and sulfatides, galactolipids enriched in myelin. Brain slices from 14-, 17-, and 21-day-old D2, B6, and F1 mice were incubated with [3H]galactose and [35S]sulfate. After incubation, microsomes, myelin, and oligodendroglial cells were isolated, and the galactolipids were analyzed. At 21 days of age, the labeling of cerebrosides in F1 mice was higher than in D2 and B6 mice when the results were expressed as microsomal or myelin radioactivity per gram wet weight. At 14 and 17 days of age, the labeling of cerebrosides in F1 animals was similar to that in D2 mice and was considerably higher than that in B6 mice. The labeling of sulfatides in F1 animals was significantly higher than in the B6 parent at all ages studied, whereas it remained higher than that in the D2 parent only at 17 days of age. A similar relationship among the strains was observed when the synthesis of myelin galactolipids was estimated by measuring the in vitro activity of UDP-galactose:ceramide galactosyltransferase and 3'-phosphoadenylyl sulfate:galactosylceramide 3'-sulfotransferase. The results indicate that the increased accumulation of myelin galactolipids previously reported in the F1 mice is partially due to enhanced synthetic activity.  相似文献   

7.
Meylin partially purified from spinal cords of dysmyelinating mutant (shiverer) mice had almost three-fold the specific activity of 5′-nucleotidase found in the respective myelin fraction from normal mice. The specific activities of two other normally myelin-associated enzymes, 2′,3′-cyclic nucleotide-3′-phosphohydrolase and carbonic anhydrase, were only slightly higher in the myelin membranes from shiveres, compared to those from controls. In the mutants, the three enzymes probably occur in oligodendrocyte processes. Hhypothetically, the 5′-nucleotidase in the myelin sheath in shiverer and normal mice may be localized in specialized structures.  相似文献   

8.
Abstract— Quaking mutants in mice are known to be affected by an arrest of myelinogenesis and to have a purified myelin which is more dense than that of controls. Their myelin has been shown to demonstrate a striking decrease in proteolipid protein, a lesser decrease in the small myelin basic protein and changes in glycoproteins comprising reduction in the major peak and shift of this peak towards a higher apparent molecular weight. The possibility that these findings might reflect merely contamination of myelin with other membranes was tested by subfractionation. Light myelin (floats on 0.62 m -sucrose) is generally accepted as more compact and mature than the heavier subfraction (floating on 0.85 m -sucrose). The changes previously found were present in both subfractions and even more marked in the light myelin. These results indicate that the anomalies of myelin proteins and glycoproteins were not caused by contaminants and are present in compact myelin as well as in membranes which are transitional between the glial plasma membrane and the myelin sheath. Therefore, we suggest that the Quaking mutation results in dysmyelination rather than hypomyelination.  相似文献   

9.
Abstract— The biosynthesis and accumulation of monogalactosyl diglyceride, galacto-cerebrosides and sulfatides were studied in the brain of quaking mouse during myelination. The specific activity of monogalactosyl diglyceride synthesis of the mutant mouse was reduced to 50% of the control of the same age, comparable to the reduction in the biosynthesis of galactosylcerebrosides and sulfatides. The three galactolipids were largely associated with the myelin and microsomal fractions in the normal and quaking mice at the ages studied. Although the concentrations of microsomal galactolipids (expressed as nmol/g wet wt of brain) were lower in quaking mice than in the controls at all ages, the percentage of total brain monogalactosyl diglyceride recovered in the microsomes of the mutant mouse was always larger than in the microsomes of the controls. Between 16 and 41 days, the monogalactosyl diglyceride content of the control myelin increased 10-fold, whereas the concentrations in the mutant increased only 2-fold. In normal animals, the percentage of total myelin galactolipids in the 'small myelin' decreased over the age of 1841 days with concomitant increase in the 'large myelin'. In contrast, in the mutant, large percentages of these compounds remained associated with the small myelin even at late periods of myelin development. These findings indicate that the slow rate of deposition of myelin in the brain of quaking mouse may be due to a defective transport mechanism of the galactolipids from the site of synthesis (microsomes) to the site of deposition (myelin), or to a defect in the mechanism of final myelin assembly, rather than to a lipid-specific genetic error.  相似文献   

10.
COMPOSITION OF MOUSE BRAIN MYELIN DURING DEVELOPMENT   总被引:9,自引:3,他引:6  
Myelin was isolated from the brains of mice at ages of 14, 24, 41, 44, 47, and 182 days and the contents of lipid phosphorus, cholesterol, lipid galactose, alkenyl groups, ethanolamine phosphoglycerides, choline phosphoglycerides, sphingomyelin, and serine and inositol phosphoglycerides were determined. Significant differences in the composition relative to total lipid phosphorus were found in the myelin. At 14 days of age, the myelin had lower relative amounts of cholesterol, galactolipids, alkenyl groups, and ethanolamine phosphoglycerides and a higher relative amount of choline phosphoglycerides.  相似文献   

11.
Abstract: Oligodendrocytes and Schwann cell-specific proteins are assembled with a highly ordered membrane lipid bilayer to the myelin sheath of axons, which functions as an insulator and allows rapid saltatory conduction. We approached the question of the function of the CNS and PNS myelin-specific galactospingolipids cerebrosides and sulfatides by generating a ceramide galactosyltransferase null allelic mouse line ( cgt −/−). Galactocerebroside- and sulfatide-deficient myelin loses its insulating properties and causes a severe dysmyelinosis that is incompatible with life. Here, we describe the biochemical and biophysical analysis of the myelin lipid bilayer of cgt −/− mice. The lipid composition of CNS and PNS myelin of cgt −/− mice is seriously perturbed and the sphingolipid biosynthetic pathway altered. Nonhydroxy and hydroxy fatty acid-substituted glycosylceramides (GlcC) are synthesized by oligodendrocytes and sulfated GlcC in addition in Schwann cells. The monogalactosyldiglyceride fraction is missing in the cgt −/− mouse. This new lipid composition can be correlated with the biophysical properties of the myelin sheath. The deficiency of galactocerebrosides and sulfatides leads to an increased fluidity, permeability, and impaired packing of the myelin lipid bilayer of the internodal membrane system. The loss of the two glycosphingolipid classes causes the breakdown of saltatory conductance of myelinated axons in the cgt −/− mouse.  相似文献   

12.
The galactolipids monogalactosyl and digalactosyl diacylglycerol occur in all higher plants and are the predominant lipid components of chloroplast membranes. They are thought to be of major importance to chloroplast morphology and physiology, although direct experimental evidence is still lacking. The enzymes responsible for final assembly of galactolipids are associated with the envelope membranes of plastids, and their biochemical analysis has been notoriously difficult. Therefore, we have chosen a genetic approach to study the biosynthesis and function of galactolipids in higher plants. We isolated a mutant of Arabidopsis that is deficient in digalactosyl diacylglycerol by directly screening a mutagenized M2 population for individuals with altered leaf lipid composition. This mutant carries a recessive nuclear mutation at a single locus designated dgd1. Backcrossed mutants show stunted growth, pale green leaf color, reduced photosynthetic capability, and altered thylakoid membrane ultrastructure.  相似文献   

13.
Abstract— A developmental study of proteolipids from brains of normal mice and two myelin deficient mutants, jimpy and quaking, was performed. The proteolipids were obtained by diethyl ether precipitation of washed total lipid extracts from whole brains and were analysed on polyacrylamide gels containing sodium dodecyl sulphate. The amount of ether precipitable material extractable from normal brains increased almost six-fold between 12 and 21 days posr partum. This increase was not observed with the mutant mice. Polyacrylamide gel electrophoretic analysis of the proteolipid fraction showed it to be heterogeneous, with eight major protein bands. Two of these proteins increased rapidly in quantity in normal mice between 13 and 21 days. These two proteins were present, in severely reduced quantities in the brains of jimpy and quaking mice at all ages examined. One of these proteolipids was the major species present in proteolipid extracts from the brains of normal mature mice. This protein coelectrophoresed with proteolipid isolated from purified myelin and has been tentatively identified as the myelin proteolipid. The other proteolipid which was deficient in jimpy and quaking brains was not characterized, but it appeared to be of extra-myelin origin, and suggests that parts of the brain other than the myelin sheath may be involved in the jimpy and quaking disorders.  相似文献   

14.
 The myelin sheath is normally regarded as an electrical insulator. Low values of radial conductance and capacitance have been measured, and in electrical models of myelinated axons the contribution of longitudinal conduction within the sheath has been ignored. According to X-ray diffraction studies, however, myelin sheaths comprise alternate lipid and aqueous layers, and the latter may be expected to have a low resistivity. We propose a new model of myelinated axons in which the aqueous layers within the myelin provide appreciable longitudinal and radial conductance, the latter via a spiral pathway. We have investigated the likely contribution of these conductive paths within the myelin to the electrical properties of a human motor nerve fibre by computer simulation, representing the myelin sheath as a series of interconnecting parallel lamellae. With this new model, action potential conduction has been simulated along a 20-node cable, and the electrotonic responses to 100-ms depolarizing and hyperpolarizing current pulses have been simulated for a uniformly polarized fibre. We have found that the hypothesis of a longitudinally conducting myelin sheath improves our previous model in two ways: it is no longer necessary to make implausible assumptions about the resistivity or width of the periaxonal space to simulate realistic electrotonus, and the conduction velocity is appreciably faster (by 8.6%). Received: 19 April 1999 / Accepted in revised form: 11 September 2000  相似文献   

15.
The coordination of the vertebrate nervous system requires high velocity signal transmission between different brain areas. High speed nerve conduction is achieved in the myelinated fibers of both the central and the peripheral nervous system where the myelin sheath acts as an insulator of the axon. The interactions between the glial cell and the adjacent axon, namely axo-glial interactions, segregate the fiber in distinct molecular and functional domains that ensure the rapid propagation of action potentials. These domains are the node of Ranvier, the paranode, the juxtaparanode and the internode and are characterized by multiprotein complexes between voltage-gated ion channels, cell adhesion molecules, members of the Neurexin family and cytoskeletal proteins. In the present review, we outline recent evidence on the key players of axo-glial interactions, depicting their importance in myelinated fiber physiology and disease.  相似文献   

16.
Brain and spinal cord of female mice heterozygous for the jimpy gene were analyzed during development for activity of ceramide galactosyl transferase (CGT) and for levels of myelin basic protein (MBP). CGT activity was low at 13-14 days in brains of heterozygous jimpy females but showed normal levels by 31-36 days, in agreement with our earlier study of this enzyme. In cord, CGT activity was normal or slightly above normal at all ages studied, from 13-14 days into adulthood. In both brain and cord, decreased levels of MBP were observed at 13 days; by 100 days, amounts of MBP approached normal levels. Proven female carriers of the jimpy gene also showed normal levels of CGT activity, MBP, and isolated myelin at 200-250 days of age in both brain and cord. These biochemical findings agree with previous morphologic measurements in cord demonstrating deficits in myelin at early ages but compensation by 100 days. Our results show that compensation occurs earlier in cord than in brain and that levels of MBP show a closer correlation than CGT activity with amounts of myelin, as measured by either morphometric analysis or direct isolation.  相似文献   

17.
Lipid composition of rat brain myelin in triethyl tin-induced edema   总被引:4,自引:0,他引:4  
Chronic triethyl tin intoxication was induced in young adult rats by oral feeding of triethyl tin sulfate. Progressively severe brain edema developed during the 3-month experimental period. The yield of myelin from the brains of the experimental animals decreased to almost half normal per brain, but the isolated myelin appeared morphologically normal. The analysis of whole brain showed corresponding decreases in proteolipid protein and total lipid, particularly galactolipids. The proportions of the major constituents of isolated myelin (chloroform-methanol-insoluble residue, proteolipid protein, and total lipid) were unchanged despite the low yield. However, the proportion of cholesterol increased from 16 to 21% dry weight, and that of total galactolipid decreased from 21 to 15%, as the yield of myelin decreased. This decrease of total galactolipid was mainly due to the decrease in cerebroside. Total phospholipid remained constant initially but showed a slight decrease toward the end of the experiment, due mostly to decreased ethanolamine phospholipid. There was no preferential loss or preservation of phosphatidalethanolamine. The fatty acid composition of sulfatide showed statistically significant shifts to less long-chain fatty acids and less monoenoic acids, but cerebroside and sphingomyelin did not show significant changes in the fatty acid composition. There was no increase in esterified cholesterol. These findings generally support our hypothesis of nonspecific chemical abnormalities of the myelin sheath undergoing secondary degeneration. In an acute experiment, a single intraperitoneal injection of triethyl tin sulfate produced acute and transient brain edema. There were slight decreases in the yield of myelin, but no detectable changes in the chemical composition.  相似文献   

18.
Rapid nerve impulse conduction depends on specialized membrane domains in myelinated nerve, the node of Ranvier, the paranode, and the myelinated internodal region. We report that GPI-linked contactin enables the formation of the paranodal septate-like axo-glial junctions in myelinated peripheral nerve. Contactin clusters at the paranodal axolemma during Schwann cell myelination. Ablation of contactin in mutant mice disrupts junctional attachment at the paranode and reduces nerve conduction velocity 3-fold. The mutation impedes intracellular transport and surface expression of Caspr and leaves NF155 on apposing paranodal myelin disengaged. The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels. Thus, contactin is a crucial part in the machinery that controls junctional attachment at the paranode and ultimately the physiology of myelinated nerve.  相似文献   

19.
《The Journal of cell biology》1986,103(6):2673-2682
During the active phase of myelination in myelin-deficient mutant mice (mld), myelin basic protein (MBP) synthesis is defective and the myelin lamellae are uncompacted. In these mutants, we found a fast metabolism of the myelin-associated glycoprotein (MAG) and of sulfatides, and the presence of cholesterol esters and a degradation product of MAG, dMAG, indicating that mld myelin was unstable. The increased synthesis of MAG and Wolfgram protein, two proteins present in uncompacted myelin sheath and paranodal loops, was demonstrated by high levels of messengers. Simultaneously, we found an accumulation of inclusion bodies, vacuoles, and rough endoplasmic reticulum in mld oligodendrocytes. This material was heavily immunostained for MAG. Furthermore, the developmental change between the two molecular forms of MAG (p72MAG/p67MAG) was delayed in mld mice. In 85-d-old mld mice, the MBP content increased and myelin lamellae became better compacted. In these mutants, dMAG was absent and MAG mRNAs were found in normal amounts. Furthermore, the fine structure of mld oligodendrocytes was normal and the MAG immunostaining was similar to age-matched controls. These results support a functional role for MBP in maintaining the metabolic stability and the compact structure of myelin. Furthermore, in the absence of MBP and myelin compaction, the regulation of the synthesis of at least two membrane proteins related to myelin cannot proceed.  相似文献   

20.
Jimpy mice are dysmyelinating mutants characterized by producing near normal levels of myelin basic protein (MBP) in the brain but failing to incorporate these proteins into the myelin sheath. In this study, the activity of MBP-specific protein-arginine N-methyltransferase (protein methylase I) was studied in the brains of normal and jimpy mice of different ages. The enzyme activity varied little with age in normal mice but in 18 and 21 days-old homozygous jimpy mice the activity was reduced by 50% and 75% respectively from the level of their normal littermates. Interestingly, however, heterozygous jimpy mice who are phenotypically normal and quaking mice (a similar dysmyelinating mutant) showed unaltered enzyme levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号