首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flanagan, John F. (Duke University School of Medicine, Durham. N.C.). Hydrolytic enzymes in KB cells infected with poliovirus and herpes simplex virus. J. Bacteriol. 91:789-797. 1966.-The effect of poliovirus and herpes simplex virus infection on the activity of five hydrolytic enzymes was studied in tissue culture cells of KB type. During the course of poliovirus infection, the activity of beta-glucuronidase, acid protease, acid ribonuclease, acid deoxyribonuclease, and acid phosphatase in the cytoplasm rose to levels two- to fourfold greater than the activity present in the cytoplasm of uninfected cells. The rise in cytoplasmic activity was accompanied by a concomitant decrease in enzymatic activity bound to cell particles. Shift of enzymatic activity from the particulate to soluble state was first detected at 6 hr after poliovirus infection, coinciding with the appearance of new infectious particles and virus cytopathic effect. No net synthesis of these enzymes after poliovirus infection was found. Hydrocortisone added to the culture medium failed to affect either the titer of virus produced in the cells or the release of hydrolytic enzymes from the particulate state. Herpes simplex infection produced minimal alterations in the state of these enzymes in KB cells. It is hypothesized that the breakdown of lysosomes and release of hydrolytic enzymes accompanying poliovirus infection is produced by alterations in cell membrane permeability during the course of virus replication and by the consequent change in the ionic content of the cell sap.  相似文献   

2.
The growth of poliovirus in a HeLa cell culture persistently infected with the hemagglutinating virus of Japan (HVJ, the Sendai strain of parainfluenza 1 virus) (HeLaHVJ) was studied. Plaques produced by poliovirus on HeLaHVJ cell monolayers were hazier, smaller and fewer than those on HeLa cells. HeLaHVJ cells were indistinguishable from normal HeLa cells with respect to adsorption rate and penetration efficiency of poliovirus. Extracellular yields of poliovirus in HeLaHVJ cells were lower, and the cytopathic changes were less than those in normal HeLa cells, while cell-associated virus growth in HeLaHVJ cells was nearly equal to that in HeLa cells. HeLaHVJ cells responded more effectively to the action of magnesium chloride, which facilitates virus release from infected cells, resulting in an cytopathic effects. No reduction in poliovirus yield could be detected in HeLa cells acutely infected with HVJ. The relationship between the inhibition of the release of poliovirus from HeLaHVJ cells and the persistent infection of the cells with HVJ is discussed.  相似文献   

3.
Rescue of Temperature-sensitive Poliovirus   总被引:2,自引:1,他引:1  
A temperature-sensitive strain of type 1 poliovirus, LSc, was functionally rescued when infected cells were incubated at 40 C in the presence of Mahoney, a temperature-resistant strain of type 1 poliovirus. The rescue value was 9% of the mutant yield obtained under permissive conditions. Rescued virus underwent replication, because the progeny of (32)P-labeled LSc were not radiosensitive. Serum inactivation studies with Mahoney specific antiserum indicated that a small amount of phenotypic mixing occurred among the rescued particles. The temperature-sensitive event occurred between 2 and 4 hr postinfection in the developmental cycle of LSc. Neither viral polymerase activity nor virus-induced ribonucleic acid could be demonstrated in infected cells between 2 and 4 hr after infection at 40 C with the temperature-sensitive mutant.  相似文献   

4.
Peptide-chain initiation with LSc poliovirus was more resistant to hypertonic medium than peptide-chain initiation with Mahoney poliovirus. Protein synthesis of LSc virus retained its relative resistance to high osmolarity created by the addition of excess NaCl to the medium in cells coinfected with Mahoney virus. The data indicate that peptide-chain initiation with LSc virus is intrinsically more resistant to high osmolarity than that of Mahoney virus rather than reflecting different permeability changes in cells after infection. Two Mahoney virus mutants harboring deletions at the 5' end of the viral chromosome exhibited the same sensitivity to excess NaCl as parent virus, suggesting that the original chromosomal region for peptide-chain initiation has not been severely altered by the deletions.  相似文献   

5.
Cells of the four hybrid lines between continuous mouse cells Rag and human diploid embryonal fibroblasts were polymorphic and had mitotic activity in fully formed monolayers. Most of the these mitoses were pathological. Hybrid cells examined 8 months after hybridization were susceptible to the poliomyelitis virus infection with partial cytopathologic effect, they produced virus antigens and the infectious virus. Small hybrid cells displayed a more pronounced cytopathologic effect than did big, polynuclear and mitotic cells. Hybrid cells that were passaged 1.5 months after infection did not excrete any infectious poliovirus but contained poliovirus antigens.  相似文献   

6.
The clathrin endocytic pathway in viral infection.   总被引:19,自引:1,他引:18       下载免费PDF全文
How important is the clathrin-dependent endocytic pathway for entry of viruses into host cells? While it is widely accepted that Semliki Forest virus (SFV), an enveloped virus, requires this pathway there are conflicting data concerning the closely related Sindbis virus, as well as varying results with picornaviruses such as human rhinovirus 14 (HRV 14) and poliovirus. We have examined the entry mode of SFV, Sindbis virus, HRV 14 and poliovirus using a method that identifies single infected cells. This assay takes advantage of the observation that the clathrin-dependent endocytic pathway is specifically and potently arrested by overexpression of dynamin mutants that prevent clathrin-coated pit budding. Using HeLa cells and conditions of low multiplicity of infection to favor use of the most avid pathway of cell entry, it was found that SFV, Sindbis virus and HRV 14 require an active clathrin-dependent endocytic pathway for successful infection. In marked contrast, infection of HeLa cells by poliovirus did not appear to require the clathrin pathway.  相似文献   

7.
Poliovirus initiates infection of primate cells by binding to the poliovirus receptor, Pvr. Mouse cells do not bind poliovirus but express a Pvr homolog, Mph, that does not function as a poliovirus receptor. Previous work has shown that the first immunoglobulin-like domain of the Pvr protein contains the virus binding site. To further identify sequences of Pvr important for its interaction with poliovirus, stable cell lines expressing mutated Pvr molecules were examined for their abilities to bind virus and support virus replication. Substitution of the amino-terminal domain of Mph with that of Pvr yields a molecule that can function as a poliovirus receptor. Cells expressing this chimeric receptor have normal binding affinity for poliovirus, yet the kinetics of virus replication are delayed. Results of virus alteration assays indicate that this chimeric receptor is defective in converting native virus to 135S altered particles. This defect is not observed with cells expressing receptor recombinants that include Pvr domains 1 and 2. Because altered particles are believed to be an intermediate in poliovirus entry, these findings suggest that Pvr domains 2 and 3 participate in early stages of infection. Additional mutants were made by substituting variant Mph residues for the corresponding residues in Pvr. The results were interpreted by using a model of Pvr predicted from the known structures of other immunoglobulin-like V-type domains. Analysis of stable cell lines expressing the mutant proteins revealed that virus binding is influenced by mutations in the predicted C'-C" loop, the C" beta-strand, the C"-D loop, and the D-E loop. Mutations in homologous regions of the immunoglobulin-like CD4 molecule alter its interaction with gp120 of human immunodeficiency virus type 1. Cells expressing Pvr mutations on the predicted C" edge do not develop cytopathic effect during poliovirus infection, suggesting that poliovirus-induced cytopathic effect may be induced by the virus-receptor interaction.  相似文献   

8.
The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures.  相似文献   

9.
Poliovirus infects susceptible cells through the poliovirus receptor (PVR), which functions to bind virus and to change its conformation. These two activities are thought to be necessary for efficient poliovirus infection. How binding and conformation conversion activities contribute to the establishment of poliovirus infection was investigated. Mouse L cells expressing mouse high-affinity Fcγ receptor molecules were established and used to study poliovirus infection mediated by mouse antipoliovirus monoclonal antibodies (MAbs) (immunoglobulin G2a [IgG2a] subtypes) or PVR-IgG2a, a chimeric molecule consisting of the extracellular moiety of PVR and the hinge and Fc portion of mouse IgG2a. The antibodies and PVR-IgG2a showed the same degree of affinity for poliovirus, but the infectivities mediated by these molecules were different. Among the molecules tested, PVR-IgG2a mediated the infection most efficiently, showing 50- to 100-fold-higher efficiency than that attained with the different MAbs. A conformational change of poliovirus was induced only by PVR-IgG2a. These results strongly suggested that some specific interaction(s) between poliovirus and the PVR is required for high-level infectivity of poliovirus in this system.  相似文献   

10.
Mitotic Hep-2 cells, selected by the PEL (colloidal silica) density gradient method and held in mitosis with Colcemid, are readily infected by poliovirus type I (Mahoney). They produce and release the same amount of virus as interphase, random-growing cells. In contrast to interphase cells, mitotic cells show no detectable virus-induced cytopathic effect at the light microscopy level and only slight alterations, consisting of small clusters of vacuoles, at the electron microscopy level. Mitotic cells contain the same total amount of lysosomal enzymes per cell as interphase cells, but they display no redistribution of lysosomal enzymes during the virus infection as interphase cells do. This supports the view that lysosomal enzyme redistribution is associated with the cytopathic effect in poliovirus infection but shows that virus synthesis and release is not dependent on either the cytopathic effect or lysosomal enzyme release. The possible reasons for the lack of cytopathic effect in mitotic cells are discussed.  相似文献   

11.
We studied the association of several eucaryotic viral and cellular mRNAs with cytoskeletal fractions derived from normal and virus-infected cells. We found that all mRNAs appear to associate with the cytoskeletal structure during protein synthesis, irrespective of their 5' and 3' terminal structures: e.g., poliovirus that lacks a 5' cap structure or reovirus and histone mRNAs that lack a 3' poly A tail associated with the cytoskeletal framework to the same extent as capped, polyadenylated actin mRNA. Cellular (actin) and viral (vesicular stomatitis virus and reovirus) mRNAs were released from the cytoskeletal framework and their translation was inhibited when cells were infected with poliovirus. In contrast, actin mRNA was not released from the cytoskeleton during vesicular stomatitis virus infection although actin synthesis was inhibited. In addition, several other conditions under which protein synthesis is inhibited did not result in the release of mRNAs from the cytoskeletal framework. We conclude that the association of mRNA with the cytoskeletal framework is required but is not sufficient for protein synthesis in eucaryotes. Furthermore, the shut-off of host protein synthesis during poliovirus infection and not vesicular stomatitis virus infection occurs by a unique mechanism that leads to the release of host mRNAs from the cytoskeleton.  相似文献   

12.
Disulfide-linked conjugates of poliovirus with streptavidin or concanavalin A were formed and the binding of the conjugates to mouse L cells that lack natural poliovirus receptors was studied. The conjugate with streptavidin was specifically bound to biotinylated L cells, but not to unmodified L cells. The conjugate with conA was bound to L cells in the absence of, but not in the presence of alpha-methyl mannoside. Incubation of L cells with bound conjugates did not produce virus, although the conjugates were highly infectious in HeLa cells, containing natural poliovirus receptors. This suggests that the artificially bound virus was unable to penetrate the L cells and start replication. The possibility that binding of the virus to the natural receptor is required for efficient infection is discussed.  相似文献   

13.
Addition of monensin or nigericin after poliovirus entry into HeLa cells prevents the inhibition of host protein synthesis by poliovirus. The infected cells continue to synthesize cellular proteins at control levels for at least 8 h after infection in the presence of the ionophore. Cleavage of p220 (gamma subunit of eukaryotic initiation factor 4 [eIF-4 gamma]), a component of the translation initiation factor eIF-4F, occurs to the same extent in poliovirus-infected cells whether or not they are treated with monensin. Two hours after infection there is no detectable intact p220, but the cells continue to translate cellular mRNAs for several hours at levels similar to those in uninfected cells. Nigericin or monensin prevented the arrest of host translation at all the multiplicities of poliovirus infection tested. At high multiplicities of infection, an unprecedented situation was found: cells synthesized poliovirus and cellular proteins simultaneously. Superinfection of vesicular stomatitis virus-infected HeLa cells with poliovirus led to a profound inhibition of vesicular stomatitis virus protein synthesis, while nigericin partially prevented this blockade. Drastic inhibition of translation also took place in influenza virus-infected Vero cells treated with nigericin and infected with poliovirus. These findings suggest that the translation of newly synthesized mRNAs is dependent on the integrity of p220, while ongoing cellular protein synthesis does not require an intact p220. The target of ionophore action during the poliovirus life cycle was also investigated. Addition of nigericin at any time postinfection profoundly blocked the synthesis of virus RNA, whereas viral protein synthesis was not affected if nigericin was added at 4 h postinfection. These results agree well with previous findings indicating that inhibitors of phospholipid synthesis or vesicular traffic interfere with poliovirus genome replication. Therefore, the action of nigericin on the vesicular system may affect poliovirus RNA synthesis. In conclusion, monensin and nigericin are potent inhibitors of poliovirus genome replication that prevent the shutoff of host translation by poliovirus while still permitting cleavage of p220.  相似文献   

14.
Expression of the poliovirus receptor (PVR) on cells is a major host determinant of infection by poliovirus. Previously, the only immune cell type known to express PVR was the blood-derived monocyte, which is susceptible to infection at very low frequency. We demonstrate that professional antigen-presenting cells-macrophages and dendritic cells, generated upon differentiation of monocytes-retain expression of PVR and are highly susceptible to infection by type 1 Mahoney strain of poliovirus. Maximal cell-associated titers of virus are obtained within 6 to 8 h postinfection, and cell death and lysis occurs within 24 h postinfection. Similar kinetics are observed in cells infected with the Sabin 1 vaccine strain. Although protein synthesis and receptor-mediated endocytosis are inhibited upon poliovirus infection of these critical antigen-presenting cells, we demonstrate for the first time that functional presentation of antigen occurs in these infected cells via the HLA class II pathway.  相似文献   

15.
Cotransfection of poliovirus RNA and R1, a poliovirus subgenomic RNA containing a deletion of nearly all of the capsid region, resulted in surviving cells, in contrast to the complete cell death observed after transfection with viral RNA. Cells that survived the cotransfection grew into colonies, produced infectious poliovirus, and underwent cycles of cell lysis (crisis periods) where less than 1% of the cells survived, followed by periods of growth. Poliovirus evolved during the persistent infection as judged by changes in plaque size. After passage for 6 months, a stable line called SOFIA emerged that no longer produced infectious virus and did not contain viral proteins or viral RNA. Cells frozen in liquid N2 while still in crisis and recultured 4 months later (named SOFIA N2) were also stabilized. After infection with poliovirus, SOFIA N2 cells showed a delay in the development of cytopathic effect, viral production, and cellular death when compared with HeLa cells. In contrast, SOFIA cells did not develop cytopathic effect and produced 10,000 times less virus than SOFIA N2 or HeLa cells. Viral production was delayed in SOFIA and SOFIA N2 cells transfected with poliovirus RNA when compared with HeLa cells, suggesting the presence of an intracellular block to poliovirus replication. Analysis of the cellular receptor for poliovirus by virus binding, an enzyme-linked immunosorbent assay, and in situ rosette assays with an antireceptor monoclonal antibody showed that receptors were expressed in SOFIA N2 cells but not in SOFIA cells. Echovirus 6, an enterovirus which uses a different cellular receptor, formed small plaques on SOFIA cells. Vesicular stomatitis virus formed plaques of similar size on SOFIA and HeLa cells, suggesting that the intracellular block was specific for enteroviruses. Cotransfection of the subgenomic replicon R1 with poliovirion RNA therefore resulted in the selection of HeLa cell variants containing blocks to poliovirus replication at the level of receptor and within the cell.  相似文献   

16.
Entry of poliovirus into cells does not require a low-pH step.   总被引:20,自引:13,他引:7       下载免费PDF全文
The requirement of a low-pH step during poliovirus entry was investigated by using the macrolide antibiotic bafilomycin A1, which is a powerful and selective inhibitor of the vacuolar proton-ATPases. Thus, viruses such as Semliki Forest virus and vesicular stomatitis virus that enter cells through endosomes and need their acidification, are potently inhibited by bafilomycin A1, whereas poliovirus infection is not affected by the antibiotic. The presence of lysosomotropic agents such as chloroquine, amantadine, dansylcadaverine, and monensin during poliovirus entry did not inhibit infection, further supporting the idea that poliovirus does not depend on a low-pH step to enter the cytoplasm. The effect of bafilomycin A1 on other members of the Picornaviridae family was also assayed. Encephalomyocarditis virus entry into HeLa cells was not affected by the macrolide antibiotic, whereas rhinovirus was sensitive. Coentry of toxins, such as alpha-sarcin, with viral particles was potently inhibited by bafilomycin A1, indicating that an active vacuolar proton-ATPase is necessary for the early membrane permeabilization (coentry of alpha-sarcin) induced by poliovirus to take place.  相似文献   

17.
Lysis of HeLa cells infected with poliovirus revealed intact virus; 135S particles, devoid of VP4 but containing the viral RNA; and 80S empty capsids. During infection the kinetics of poliovirus uncoating showed a continuous decrease of intact virus, while the number of 135S particles and empty shells increased. After 1.5 h of infection conformational transition to altered particles resulted in complete disappearance of intact virions. To investigate the mechanism of poliovirus uncoating, which has been suggested to depend on low pH in endosomal compartments of cells, we used lysosomotropic amines to raise the pH in these vesicles. In the presence of ammonium chloride, however, the kinetics of uncoating were similar to those for untreated cells, whereas in cells treated with methylamine, monensin, or chloroquine, uncoating was merely delayed by about 30 min. This effect could be attributed to a delay of virus entry into cells after treatment with methylamine and monensin, whereas chloroquine stabilized the viral capsid itself. Thus, elevation of endosomal pH did not affect virus uncoating. We therefore propose a mechanism of poliovirus uncoating which is independent of low pH.  相似文献   

18.
Polarized epithelial cells represent the primary barrier to virus infection of the host, which must also be traversed prior to virus dissemination from the infected organism. Although there is considerable information available concerning the release of enveloped viruses from such cells, relatively little is known about the processes involved in the dissemination of nonenveloped viruses. We have used two polarized epithelial cell lines, Vero C1008 (African green monkey kidney epithelial cells) and Caco-2 (human intestinal epithelial cells), infected with poliovirus and investigated the process of virus release. Release of poliovirus was observed to occur almost exclusively from the apical cell surface in Caco-2 cells, whereas infected Vero C1008 cells exhibited nondirectional release. Structures consistent with the vectorial transport of virus contained within vesicles or viral aggregates were observed by electron microscopy. Treatment with monensin or ammonium chloride partially inhibited virus release from Caco-2 cells. No significant cell lysis was observed at the times postinfection when extracellular virus was initially detected, and transepithelial resistance and vital dye uptake measurements showed only a moderate decrease. Brefeldin A was found to significantly and specifically inhibit poliovirus biosynthetic processes by an as yet uncharacterized mechanism. The vectorial release of poliovirus from the apical (or luminal) surface of human intestinal epithelial cells has significant implications for viral pathogenesis in the human gut.  相似文献   

19.
Requirements for entry of poliovirus RNA into cells at low pH.   总被引:11,自引:2,他引:9       下载免费PDF全文
I H Madshus  S Olsnes    K Sandvig 《The EMBO journal》1984,3(9):1945-1950
HeLa S3 cells were protected against infection by poliovirus type I by the presence of monensin and N,N'-dicyclohexylcarbodiimide (DCCD), compounds elevating the pH of acidic intracellular compartments. The protection was fully overcome by exposing the cells to pH 5.5 and lower, and at approximately pH 6.1 it was reduced by half. Measurements of the ability of the virus to enter the detergent phase under conditions where Triton X-114 was separated from water indicated that the virus is hydrophilic at neutral pH, and that it exposes hydrophobic regions at low pH. When the cells were pretreated with acetic acid, which reduces the intracellular pH, virus entry was inhibited, indicating that a pH gradient across the membrane is necessary for infection. Under all conditions which induced infection, the virus particles were altered to more slowly sedimenting material. Also, virus bound to aldehyde-fixed cells was altered when exposed to low pH at 37 degrees C. The data indicate that poliovirus bound to receptors on cells exposes hydrophobic regions at low pH, and that at physiological temperature it undergoes alteration. This alteration may be a necessary, but not sufficient requirement for infection.  相似文献   

20.
Mammalian cells form dynamic cytoplasmic mRNA stress granules (SGs) in response to environmental stresses including viral infections. SGs are involved in regulating host mRNA function and metabolism, although their precise role during viral infection is unknown. SGs are thought to assemble based on functions of the RNA-binding proteins TIA-1/TIAR or Ras-GAP SH3 domain-binding protein (G3BP). Here, we investigated the relationship between a prototypical plus-strand RNA virus and SGs. Early during poliovirus infection, SG formation is induced, but as infection proceeds this ability is lost, and SGs disperse. Infection resulted in cleavage of G3BP, but not TIA-1 or TIAR, by poliovirus 3C proteinase. Expression of a cleavage-resistant G3BP restored SG formation during poliovirus infection and significantly inhibited virus replication. These results elucidate a mechanism for viral interference with mRNP metabolism and gene regulation and support a critical role of G3BP in SG formation and restriction of virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号