首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances beta-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the beta-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from -80 to -140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor-trapping model in which the beta-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.  相似文献   

2.
Immobilizing the moving parts of voltage-gated ion channels   总被引:3,自引:0,他引:3  
Voltage-gated ion channels have at least two classes of moving parts, voltage sensors that respond to changes in the transmembrane potential and gates that create or deny permeant ions access to the conduction pathway. To explore the coupling between voltage sensors and gates, we have systematically immobilized each using a bifunctional photoactivatable cross-linker, benzophenone-4-carboxamidocysteine methanethiosulfonate, that can be tethered to cysteines introduced into the channel protein by mutagenesis. To validate the method, we first tested it on the inactivation gate of the sodium channel. The benzophenone-labeled inactivation gate of the sodium channel can be trapped selectively either in an open or closed state by ultraviolet irradiation at either a hyperpolarized or depolarized voltage, respectively. To verify that ultraviolet light can immobilize S4 segments, we examined its relative effects on ionic and gating currents in Shaker potassium channels, labeled at residue 359 at the extracellular end of the S4 segment. As predicted by the tetrameric stoichiometry of these potassium channels, ultraviolet irradiation reduces ionic current by approximately the fourth power of the gating current reduction, suggesting little cooperativity between the movements of individual S4 segments. Photocross-linking occurs preferably at hyperpolarized voltages after labeling residue 359, suggesting that depolarization moves the benzophenone adduct out of a restricted environment. Immobilization of the S4 segment of the second domain of sodium channels prevents channels from opening. By contrast, photocross-linking the S4 segment of the fourth domain of the sodium channel has effects on both activation and inactivation. Our results indicate that specific voltage sensors of the sodium channel play unique roles in gating, and suggest that movement of one voltage sensor, the S4 segment of domain 4, is at least a two-step process, each step coupled to a different gate.  相似文献   

3.
Depolarization of sodium channels initiates at least three gating pathways: activation, fast inactivation, and slow inactivation. Little is known about the voltage sensors for slow inactivation, a process believed to be separate from fast inactivation. Covalent modification of a cysteine substituted for the third arginine (R1454) in the S4 segment of the fourth domain (R3C) with negatively charged methanethiosulfonate-ethylsulfonate (MTSES) or with positively charged methanethiosulfonate-ethyltrimethylammonium (MTSET) produces a marked slowing of the rate of fast inactivation. However, only MTSES modification produces substantial effects on the kinetics of slow inactivation. Rapid trains of depolarizations (2-20 Hz) cause a reduction of the peak current of mutant channels modified by MTSES, an effect not observed for wild-type or unmodified R3C channels, or for mutant channels modified by MTSET. The data suggest that MTSES modification of R3C enhances entry into a slow-inactivated state, and also that the effects on slow inactivation are independent of alterations of either activation or fast inactivation. This effect of MTSES is observed only for cysteine mutants within the middle of this S4 segment, and the data support a helical secondary structure of S4 in this region. Mutation of R1454 to the negatively charged residues aspartate or glutamate cannot reproduce the effects of MTSES modification, indicating that charge alone cannot account for these results. A long-chained derivative of MTSES has similar effects as MTSES, and can produce these effects on a residue that does not show use-dependent current reduction after modification by MTSES, suggesting that the sulfonate moiety can reach a critical site affecting slow inactivation. The effects of MTSES on R3C are partially counteracted by a point mutation (W408A) that inhibits slow inactivation. Our data suggest that a region near the midpoint of the S4 segment of domain 4 plays an important role in slow inactivation.  相似文献   

4.
The one-domain voltage-gated sodium channel of Bacillus halodurans (NaChBac) is composed of six transmembrane segments (S1–S6) comprising a pore-forming region flanked by segments S5 and S6 and a voltage-sensing element composed of segment S4. To investigate the role of the S4 segment in NaChBac channel activation, we used the cysteine mutagenesis approach where the positive charges of single and multiple arginine (R) residues of the S4 segment were replaced by the neutrally charged amino acid cysteine (C). To determine whether it was the arginine residue itself or its positive charge that was involved in channel activation, arginine to lysine (R to K) mutations were constructed. Wild-type (WT) and mutant NaChBac channels were expressed in tsA201 cells and Na+ currents were recorded using the whole-cell configuration of the patch-clamp technique. The current/voltage (I-V) and conductance/voltage (G-V) relationships steady-state inactivation (h ) and recovery from inactivation were evaluated to determine the effects of the S4 mutations on the biophysical properties of the NaChBac channel. R to C on the S4 segment resulted in a slowing of both activation and inactivation kinetics. Charge neutralization of arginine residues mostly resulted in a shift toward more positive potentials of G-V and h curves. The G-V curve shifts were associated with a decrease in slope, which may reflect a decrease in the gating charge involved in channel activation. Single neutralization of R114, R117, or R120 by C resulted in a very slow recovery from inactivation. Double neutralization of R111 and R129 confirmed the role of R111 in activation and suggested that R129 is most probably not part of the voltage sensor. Most of the R to K mutants retained WT-like current kinetics but exhibited an intermediate G-V curve, a steady-state inactivation shifted to more hyperpolarized potentials, and intermediate time constants of recovery from inactivation. This indicates that R, at several positions, plays an important role in channel activation. The data are consistent with the notion that the S4 is most probably the voltage sensor of the NaChBac channel and that both positive charges and the nature of the arginine residues are essential for channel activation.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

5.
Probing the outer vestibule of a sodium channel voltage sensor.   总被引:4,自引:0,他引:4       下载免费PDF全文
N Yang  A L George  Jr    R Horn 《Biophysical journal》1997,73(5):2260-2268
The second and third basic residues of the S4 segment of domain 4 (D4:R2 and D4:R3) of the human skeletal muscle Na+ channel are known to be translocated from a cytoplasmic to an extracellular position during depolarization. Accessibilities of individual S4 residues were assayed by alteration of inactivation kinetics during modification of cysteine mutants by hydrophilic methanethiosulfonate reagents. The voltage dependences of the reaction rates are identical for extracellular application of cationic methanethiosulfonate-ethyltrimethylammonium (MTSET) and anionic methanethiosulfonate-ethylsulfonate (MTSES), suggesting that D4:R3C is situated outside the membrane electric field at depolarized voltages. The absolute rate of R3C modification is 281-fold greater for MTSET than for MTSES, however, suggesting that at depolarized voltages this S4 thiol resides in a negatively charged hydrophilic crevice. The two hydrophobic residues between D4:R2C and D4:R3C in the primary sequence (L1452 and A1453) are not externally exposed at any voltage. An alpha-helical representation of D4/S4 shows that the basic residues D4:R2 and D4:R3 are on the face opposite that of L1452 and A1453. We propose that in the depolarized conformation, the hydrophobic face of this portion of D4/S4 remains in contact with a hydrophobic region of the extracellular vestibule of the S4 channel.  相似文献   

6.
Voltage-dependent ion channels transduce changes in the membrane electric field into protein rearrangements that gate their transmembrane ion permeation pathways. While certain molecular elements of the voltage sensor and gates have been identified, little is known about either the nature of their conformational rearrangements or about how the voltage sensor is coupled to the gates. We used voltage clamp fluorometry to examine the voltage sensor (S4) and pore region (P-region) protein motions that underlie the slow inactivation of the Shaker K+ channel. Fluorescent probes in both the P-region and S4 changed emission intensity in parallel with the onset and recovery of slow inactivation, indicative of local protein rearrangements in this gating process. Two sequential rearrangements were observed, with channels first entering the P-type, and then the C-type inactivated state. These forms of inactivation appear to be mediated by a single gate, with P-type inactivation closing the gate and C-type inactivation stabilizing the gate''s closed conformation. Such a stabilization was due, at least in part, to a slow rearrangement around S4 that stabilizes S4 in its activated transmembrane position. The fluorescence reports of S4 and P-region fluorophore are consistent with an increased interaction of the voltage sensor and inactivation gate upon gate closure, offering insight into how the voltage-sensing apparatus is coupled to a channel gate.  相似文献   

7.
The four voltage sensors in voltage-gated potassium (Kv) channels activate upon membrane depolarization and open the pore. The location and motion of the voltage-sensing S4 helix during the early activation steps and the final opening transition are unresolved. We studied Zn(2+) bridges between two introduced His residues in Shaker Kv channels: one in the R1 position at the outer end of the S4 helix (R362H), and another in the S5 helix of the pore domain (A419H or F416H). Zn(2+) bridges readily form between R362H and A419H in open channels after the S4 helix has undergone its final motion. In contrast, a distinct bridge forms between R362H and F416H after early S4 activation, but before the final S4 motion. Both bridges form rapidly, providing constraints on the average position of S4 relative to the pore. These results demonstrate that the outer ends of S4 and S5 remain in close proximity during the final opening transition, with the S4 helix translating a significant distance normal to the membrane plane.  相似文献   

8.
The voltage-dependent gating mechanism of KAT1 inward rectifier potassium channels was studied using single channel current recordings from Xenopus oocytes injected with KAT1 mRNA. The inward rectification properties of KAT1 result from an intrinsic gating mechanism in the KAT1 channel protein, not from pore block by an extrinsic cation species. KAT1 channels activate with hyperpolarizing potentials from −110 through −190 mV with a slow voltage-dependent time course. Transitions before first opening are voltage dependent and account for much of the voltage dependence of activation, while transitions after first opening are only slightly voltage dependent. Using burst analysis, transitions near the open state were analyzed in detail. A kinetic model with multiple closed states before first opening, a single open state, a single closed state after first opening, and a closed-state inactivation pathway accurately describes the single channel and macroscopic data. Two mutations neutralizing charged residues in the S4 region (R177Q and R176L) were introduced, and their effects on single channel gating properties were examined. Both mutations resulted in depolarizing shifts in the steady state conductance–voltage relationship, shortened first latencies to opening, decreased probability of terminating bursts, and increased burst durations. These effects on gating were well described by changes in the rate constants in the kinetic model describing KAT1 channel gating. All transitions before the open state were affected by the mutations, while the transitions after the open state were unaffected, implying that the S4 region contributes to the early steps in gating for KAT1 channels.  相似文献   

9.
Positively charged amino acids in S4 segments of voltage-dependent Ca(V)3.1 channel form putative voltage sensor. Previously we have shown that exchange of uppermost positively charged arginine in IVS4 segment for cysteine (mutation R1717C) affected deactivation and inactivation, but not activation of macroscopic current. Now we compared gating currents from both channels. Maximal amplitude of charge movement in R1717C channel decreased but voltage-dependent characteristics of charge movement were not significantly altered. We concluded that mutation of R1717C affects the coupling between S4 activation and pore opening, but not the S4 activation itself.  相似文献   

10.
The position of the voltage-sensing transmembrane segment, S4, in voltage-gated ion channels as a function of voltage remains incompletely elucidated. Site-3 toxins bind primarily to the extracellular loops connecting transmembrane helical segments S1-S2 and S3-S4 in Domain 4 (D4) and S5-S6 in Domain 1 (D1) and slow fast-inactivation of voltage-gated sodium channels. As S4 of the human skeletal muscle voltage-gated sodium channel, hNav1.4, moves in response to depolarization from the resting to the inactivated state, two D4S4 reporters (R2C and R3C, Arg1451Cys and Arg1454Cys, respectively) move from internal to external positions as deduced by reactivity to internally or externally applied sulfhydryl group reagents, methane thiosulfonates (MTS). The changes in reporter reactivity, when cycling rapidly between hyperpolarized and depolarized voltages, enabled determination of the positions of the D4 voltage-sensor and of its rate of movement. Scorpion α-toxin binding impedes D4S4 segment movement during inactivation since the modification rates of R3C in hNav1.4 with methanethiosulfonate (CH3SO2SCH2CH2R, where R = -N(CH3)3 + trimethylammonium, MTSET) and benzophenone-4-carboxamidocysteine methanethiosulfonate (BPMTS) were slowed ~10-fold in toxin-modified channels. Based upon the different size, hydrophobicity and charge of the two reagents it is unlikely that the change in reactivity is due to direct or indirect blockage of access of this site to reagent in the presence of toxin (Tx), but rather is the result of inability of this segment to move outward to the normal extent and at the normal rate in the toxin-modified channel. Measurements of availability of R3C to internally applied reagent show decreased access (slower rates of thiol reaction) providing further evidence for encumbered D4S4 movement in the presence of toxins consistent with the assignment of at least part of the toxin binding site to the region of D4S4 region of the voltage-sensor module.  相似文献   

11.
Although gamma-aminobutyric acid type A receptor agonists and antagonists bind to a common site, they produce different conformational changes within the site because agonists cause channel opening and antagonists do not. We used the substituted cysteine accessibility method and two-electrode voltage clamping to identify residues within the binding pocket that are important for mediating these different actions. Each residue from alpha(1)T60 to alpha(1)K70 was mutated to cysteine and expressed with wild-type beta(2) subunits in Xenopus oocytes. Methanethiosulfonate reagents reacted with alpha(1)T60C, alpha(1)D62C, alpha(1)F64C, alpha(1)R66C, alpha(1)S68C, and alpha(1)K70C. gamma-Aminobutyric acid (GABA) slowed methanethiosulfonate modification of alpha(1)F64C, alpha(1)R66C, and alpha(1)S68C, whereas SR-95531 slowed modification of alpha(1)D62C, alpha(1)F64C, and alpha(1)R66C, demonstrating that different residues are important for mediating GABA and SR-95531 actions. In addition, methanethiosulfonate reaction rates were fastest for alpha(1)F64C and alpha(1)R66C, indicating that these residues are located in an open, aqueous environment lining the core of the binding pocket. Positively charged methanethiosulfonate reagents derivatized alpha(1)F64C and alpha(1)R66C significantly faster than a negatively charged reagent, suggesting that a negative subsite important for interacting with the ammonium group of GABA exists within the binding pocket. Pentobarbital activation of the receptor increased the rate of methanethiosulfonate modification of alpha(1)D62C and alpha(1)S68C, demonstrating that parts of the binding site undergo structural rearrangements during channel gating.  相似文献   

12.
In Kv1.5, protonation of histidine 463 in the S5-P linker (turret) increases the rate of depolarization-induced inactivation and decreases the peak current amplitude. In this study, we examined how amino acid substitutions that altered the physico-chemical properties of the side chain at position 463 affected slow inactivation and then used the substituted cysteine accessibility method (SCAM) to probe the turret region (E456-P468) to determine whether residue 463 was unique in its ability to modulate the macroscopic current. Substitutions at position 463 of small, neutral (H463G and H463A) or large, charged (H463R, H463K, and H463E) side groups accelerated inactivation and induced a dependency of the current amplitude on the external potassium concentration. When cysteine substitutions were made in the distal turret (T462C-P468C), modification with either the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) or negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate reagent irreversibly inhibited current. This inhibition could be antagonized either by the R487V mutation (homologous to T449V in Shaker) or by raising the external potassium concentration, suggesting that current inhibition by MTS reagents resulted from an enhancement of inactivation. These results imply that protonation of residue 463 does not modulate inactivation solely by an electrostatic interaction with residues near the pore mouth, as proposed by others, and that residue 463 is part of a group of residues within the Kv1.5 turret that can modulate P/C-type inactivation. electrophysiology; voltage-gated potassium channels; substituted cysteine accessibility method  相似文献   

13.
Larsson HP  Elinder F 《Neuron》2000,27(3):573-583
Voltage-gated ion channels undergo slow inactivation during prolonged depolarizations. We investigated the role of a conserved glutamate at the extracellular end of segment 5 (S5) in slow inactivation by mutating it to a cysteine (E418C in Shaker). We could lock the channel in two different conformations by disulfide-linking 418C to two different cysteines, introduced in the Pore-S6 (P-S6) loop. Our results suggest that E418 is normally stabilizing the open conformation of the slow inactivation gate by forming hydrogen bonds with the P-S6 loop. Breaking these bonds allows the P-S6 loop to rotate, which closes the slow inactivation gate. Our results also suggest a mechanism of how the movement of the voltage sensor can induce slow inactivation by destabilizing these bonds.  相似文献   

14.
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.  相似文献   

15.
A recently proposed model for voltage-dependent activation in K+ channels, largely influenced by the KvAP X-ray structure, suggests that S4 is located at the periphery of the channel and moves through the lipid bilayer upon depolarization. To investigate the physical distance between S4 and the pore domain in functional channels in a native membrane environment, we engineered pairs of cysteines, one each in S4 and the pore of Shaker channels, and identified two instances of spontaneous intersubunit disulfide bond formation, between R362C/A419C and R362C/F416C. After reduction, these cysteine pairs bound Cd2+ with high affinity, verifying that the residues are in atomic proximity. Molecular modeling based on the MthK structure revealed a single position for S4 that was consistent with our results and many other experimental constraints. The model predicts that S4 is located in the groove between pore domains from different subunits, rather than at the periphery of the protein.  相似文献   

16.
Charged residues in the S4 transmembrane segment play a key role in determining the sensitivity of voltage-gated ion channels to changes in voltage across the cell membrane. However, cooperative interactions between subunits also affect the voltage dependence of channel opening, and these interactions can be altered by making substitutions at uncharged residues in the S4 region. We have studied the activation of two mutant Shaker channels that have different S4 amino acid sequences, ILT (V369I, I372L, and S376T) and Shaw S4 (the S4 of Drosophila Shaw substituted into Shaker), and yet have very similar ionic current properties. Both mutations affect cooperativity, making a cooperative transition in the activation pathway rate limiting and shifting it to very positive voltages, but analysis of gating and ionic current recordings reveals that the ILT and Shaw S4 mutant channels have different activation pathways. Analysis of gating currents suggests that the dominant effect of the ILT mutation is to make the final cooperative transition to the open state of the channel rate limiting in an activation pathway that otherwise resembles that of Shaker. The charge movement associated with the final gating transition in ILT activation can be measured as an isolated component of charge movement in the voltage range of channel opening and accounts for 13% ( approximately 1.8 e0) of the total charge moved in the ILT activation pathway. The remainder of the ILT gating charge (87%) moves at negative voltages, where channels do not open, and confirms the presence of Shaker-like conformational changes between closed states in the activation pathway. In contrast to ILT, the activation pathway of Shaw S4 seems to involve a single cooperative charge-moving step between a closed and an open state. We cannot detect any voltage-dependent transitions between closed states for Shaw S4. Restoring basic residues that are missing in Shaw S4 (R1, R2, and K7) rescues charge movement between closed states in the activation pathway, but does not alter the voltage dependence of the rate-limiting transition in activation.  相似文献   

17.
The voltage-sensing domain of voltage-gated channels is comprised of four transmembrane helices (S1–S4), with conserved positively charged residues in S4 moving across the membrane in response to changes in transmembrane voltage. Although it has been shown that positive charges in S4 interact with negative countercharges in S2 and S3 to facilitate protein maturation, how these electrostatic interactions participate in channel gating remains unclear. We studied a mutation in Kv7.1 (also known as KCNQ1 or KvLQT1) channels associated with long QT syndrome (E1K in S2) and found that reversal of the charge at E1 eliminates macroscopic current without inhibiting protein trafficking to the membrane. Pairing E1R with individual charge reversal mutations of arginines in S4 (R1–R4) can restore current, demonstrating that R1–R4 interact with E1. After mutating E1 to cysteine, we probed E1C with charged methanethiosulfonate (MTS) reagents. MTS reagents could not modify E1C in the absence of KCNE1. With KCNE1, (2-sulfonatoethyl) MTS (MTSES) could modify E1C, but [2-(trimethylammonium)ethyl] MTS (MTSET)+ could not, confirming the presence of a positively charged environment around E1C that allows approach by MTSES but repels MTSET+. We could change the local electrostatic environment of E1C by making charge reversal and/or neutralization mutations of R1 and R4, such that MTSET+ modified these constructs depending on activation states of the voltage sensor. Our results confirm the interaction between E1 and the fourth arginine in S4 (R4) predicted from open-state crystal structures of Kv channels and reveal an E1–R1 interaction in the resting state. Thus, E1 engages in electrostatic interactions with arginines in S4 sequentially during the gating movement of S4. These electrostatic interactions contribute energetically to voltage-dependent gating and are important in setting the limits for S4 movement.  相似文献   

18.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is active at physiological pH (pH 6.5-8.5), many questions related to the active state of NhaA have remained unanswered. Our Cys scanning of the highly conserved transmembrane VIII at physiological pH reveals that (1) the Cys replacement G230C significantly increases the apparent Km of the antiporter to both Na+ (10-fold) and Li+ (6-fold). (2) Variants G223C and G230C cause a drastic alkaline shift of the pH profile of NhaA by 1 pH unit. (3) Residues Gly223-Ala226 line a periplasmic funnel at physiological pH as they do at pH 4. Both were modified by membrane-impermeant negatively charged 2-sulfonatoethyl methanethiosulfonate and positively charged 2-(trimethyl ammonium)-ethylmethanethiosulfonate sulfhydryl reagents that could reach Cys replacements from the periplasm via water-filled funnels only, whereas other Cys replacements on helix VIII were not accessible/reactive to the reagents. (4) Remarkably, the modification of variant V224C by 2-sulfonatoethyl methanethiosulfonate or 2-(trimethyl ammonium)-ethylmethanethiosulfonate totally inhibited antiporter activity, while N-ethyl maleimide modification had a very small effect on NhaA activity. Hence, the size—rather than the chemical modification or the charge—of the larger reagents interferes with the passage of ions through the periplasmic funnel. Taken together, our results at physiological pH reveal that amino acid residues in transmembrane VIII contribute to the cation passage of NhaA and its pH regulation.  相似文献   

19.
In Shaker K(+) channels depolarization displaces outwardly the positively charged residues of the S4 segment. The amount of this displacement is unknown, but large movements of the S4 segment should be constrained by the length and flexibility of the S3-S4 linker. To investigate the role of the S3-S4 linker in the ShakerH4Delta(6-46) (ShakerDelta) K(+) channel activation, we constructed S3-S4 linker deletion mutants. Using macropatches of Xenopus oocytes, we tested three constructs: a deletion mutant with no linker (0 aa linker), a mutant containing a linker 5 amino acids in length, and a 10 amino acid linker mutant. Each of the three mutants tested yielded robust K(+) currents. The half-activation voltage was shifted to the right along the voltage axis, and the shift was +45 mV in the case of the 0 aa linker channel. In the 0 aa linker, mutant deactivation kinetics were sixfold slower than in ShakerDelta. The apparent number of gating charges was 12.6+/-0.6 e(o) in ShakerDelta, 12.7+/-0.5 in 10 aa linker, and 12.3+/-0.9 in 5 aa linker channels, but it was only 5.6+/-0.3 e(o) in the 0 aa linker mutant channel. The maximum probability of opening (P(o)(max)) as measured using noise analysis was not altered by the linker deletions. Activation kinetics were most affected by linker deletions; at 0 mV, the 5 and 0 aa linker channels' activation time constants were 89x and 45x slower than that of the ShakerDelta K(+) channel, respectively. The initial lag of ionic currents when the prepulse was varied from -130 to -60 mV was 0.5, 14, and 2 ms for the 10, 5, and 0 aa linker mutant channels, respectively. These results suggest that: (a) the S4 segment moves only a short distance during activation since an S3-S4 linker consisting of only 5 amino acid residues allows for the total charge displacement to occur, and (b) the length of the S3-S4 linker plays an important role in setting ShakerDelta channel activation and deactivation kinetics.  相似文献   

20.
The highly charged transmembrane segments in each of the four homologous domains (S4D1-S4D4) represent the principal voltage sensors for sodium channel gating. Hitherto, the existence of a functional specialization of the four voltage sensors with regard to the control of the different gating modes, i.e., activation, deactivation, and inactivation, is problematic, most likely due to a functional coupling between the different domains. However, recent experimental data indicate that the voltage sensor in domain 4 (S4D4) plays a unique role in sodium channel fast inactivation. The correlation of fast inactivation and the movement of the S4D4 voltage sensor in rat brain IIA sodium channels was examined by site-directed mutagenesis of the central arginine residues to histidine and by analysis of both ionic and gating currents using a high expression system in Xenopus oocytes and an optimized two-electrode voltage clamp. Mutation R1635H shifts the steady state inactivation to more hyperpolarizing potentials and drastically increases the recovery time constant, thereby indicating a stabilized inactivated state. In contrast, R1638H shifts the steady state inactivation to more depolarizing potentials and strongly increases the inactivation time constant, thereby suggesting a preferred open state occupancy. The double mutant R1635/1638H shows intermediate effects on inactivation. In contrast, the activation kinetics are not significantly influenced by any of the mutations. Gating current immobilization is markedly decreased in R1635H and R1635/1638H but only moderately in R1638H. The time courses of recovery from inactivation and immobilization correlate well in wild-type and mutant channels, suggesting an intimate coupling of these two processes that is maintained in the mutations. These results demonstrate that S4D4 is one of the immobilized voltage sensors during the manifestation of the inactivated state. Moreover, the presented data strongly suggest that S4D4 is involved in the control of fast inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号