首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats were exposed to 100% oxygen for up to 60 h to determine early changes in lung permeability leading to the development of pulmonary edema. The time course of development of increased solute flux was assessed by the clearance of 99mTc-labeled diethylenetriamine pentaacetate (99mTc-DTPA) from the lung and the accumulation of 125I-labeled albumin (125I-albumin) in the lung. These end points were related to the development of pulmonary edema by the measurement of the wet-to-dry weight ratio of the lung and the weight of fluid in the pleural cavity. No significant changes occurred until 48 h of hyperoxia, when sharp increases in both indexes of lung permeability and wet-to-dry weight ratio occurred. By 60 h of exposure, pleural effusions had developed. The volume of this effusion was significantly correlated to both 99mTc-DTPA clearance and 125I-albumin flux.  相似文献   

2.
We used the isolated-perfused rat lung model to study the influence of pulmonary ventilation and surfactant instillation on the development of postreperfusion lung microvascular injury. We hypothesized that the state of lung inflation during ischemia contributes to the development of the injury during reperfusion. Pulmonary microvascular injury was assessed by continuously monitoring the wet lung weight and measuring the vessel wall (125)I-labeled albumin ((125)I-albumin) permeability-surface area product (PS). Sprague-Dawley rats (n = 24) were divided into one control group and five experimental groups (n = 4 rats per group). Control lungs were continuously ventilated with 20% O(2) and perfused for 120 min. All lung preparations were ventilated with 20% O(2) before the ischemia period and during the reperfusion period. The various groups differed only in the ventilatory gas mixtures used during the flow cessation: group I, ventilated with 20% O(2); group II, ventilated with 100% N(2); group III, lungs remained collapsed and unventilated; group IV, same as group III but pretreated with surfactant (4 ml/kg) instilled into the airway; and group V, same as group III but saline (4 ml/kg) was instilled into the airway. Control lungs remained isogravimetric with baseline (125)I-albumin PS value of 4.9 +/- 0.3 x 10(-3) ml x min(-1) x g wet lung wt(-1). Lung wet weight in group III increased by 1.45 +/- 0.35 g and albumin PS increased to 17.7 +/- 2.3 x 10(-3), indicating development of vascular injury during the reperfusion period. Lung wet weight and albumin PS did not increase in groups I and II, indicating that ventilation by either 20% O(2) or 100% N(2) prevented vascular injury. Pretreatment of collapsed lungs with surfactant before cessation of flow also prevented the vascular injury, whereas pretreatment with saline vehicle had no effect. These results indicate that the state of lung inflation during ischemia (irrespective of gas mixture used) and supplementation of surfactant prevent reperfusion-induced lung microvascular injury.  相似文献   

3.
Reexpansion of a collapsed lung increases the microvascular permeability and causes reexpansion pulmonary edema. Neutrophils and their products have been implicated in the development of this phenomenon. The small GTP-binding proteins Rho and its target Rho-kinase (ROCK) regulate endothelial permeability, although their roles in reexpansion pulmonary edema remain unclear. We studied the contribution of ROCK to pulmonary endothelial and epithelial permeability in a rabbit model of this disorder. Endothelial and epithelial permeability was assessed by measuring the tissue-to-plasma (T/P) and bronchoalveolar lavage (BAL) fluid-to-plasma (B/P) ratios with (125)I-labeled albumin. After intratracheal instillation of (125)I-albumin, epithelial permeability was also assessed from the plasma leak (PL) index, the ratio of (125)I-albumin in plasma/total amount of instilled (125)I-albumin. T/P, B/P, and PL index were significantly increased in the reexpanded lung. These increases were attenuated by pretreatment with Y-27632, a specific ROCK inhibitor. However, neutrophil influx, neutrophil elastase activity, and malondialdehyde concentrations in BAL fluid collected from the reexpanded lung were not changed by Y-27632. In endothelial monolayers, Y-27632 significantly attenuated the H(2)O(2)-induced increase in permeability and mitigated the morphological changes in the actin microfilament cytoskeleton of endothelial cells. These in vivo and in vitro observations suggest that the Rho/ROCK pathway contributes to the increase in alveolar barrier permeability associated with reexpansion pulmonary edema.  相似文献   

4.
Fluid conductance and protein permeability have been studied in isolated perfused lung models of pulmonary edema. However, previous studies have not investigated changes of both fluid conductance and protein permeability in the same isolated lung preparation after injury. Arachidonic acid (AA) metabolites are involved in the inflammatory processes that lead to the development of pulmonary edema. The hemodynamic effects of AA have been well established; however, controversy exists concerning the ability of AA to alter the permeability of the pulmonary microvasculature to fluid and protein. The purpose of this study was to simultaneously determine whether transvascular fluid conductance and protein permeability are increased in isolated perfused rabbit lungs with pulmonary edema induced by AA. Indomethacin (80 microM) was added to the perfusate to inhibit the hemodynamic effects of AA and produce a pressure-independent model of pulmonary edema. Fluid conductance was assessed by determination of the capillary filtration coefficient (Kf), and protein permeability was evaluated by measurement of 125I-albumin clearance. The injection of AA (3 mg/200 ml of perfusate) into the pulmonary arterial catheter resulted in an increase in lung weight over the remaining 30-min experimental period. Kf (microliter.s-1 x cmH2O-1 x g dry lung-1) was increased (P < 0.05) in AA-treated lungs at 10 and 30 min post-AA injection when compared with control lungs and baseline values (determined 10 min before AA injection). Albumin clearance was also greater (P < 0.05) in lungs that received AA. 125I-albumin clearance was measured at different rates of fluid flux produced by elevation of venous pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We investigated the effect of IL-2 in the isolated guinea pig lung perfused with phosphate-buffered Ringer's solution (containing 0.5 g/100 ml albumin and 5.5 mM dextrose) to determine the mechanism of IL-2-induced pulmonary edema. IL-2 (0 to 10,000 U/ml) was added to the perfusate following a 10 min baseline steady-state period. Pulmonary arterial pressure (Ppa), pulmonary capillary pressure (Ppc), and change in lung weight (as a measure of developing pulmonary edema) were recorded at 0, 10, 30, 40, and 60 min. The capillary filtration coefficient (Kf.c), an index of vascular permeability to water, was measured at 30 and 60 min. Infusion of IL-2 increased Ppc (from 3.9 +/- 0.1 cm H2O at baseline to 8.8 +/- 1.1 cm H2O at 60 min for IL-2 at 2000 U/ml, p less than 0.01; and from 3.8 +/- 0.1 cm H2O at baseline to 8.9 +/- 0.6 cm H2O at 60 min for IL-2 at 10,000 U/ml, p less than 0.01. The lung weight also increased (32% at IL-2 concentration of 2000 U/ml, and 26% at IL-2 concentration of 10,000 U/ml) The capillary filtration coefficient did not change with IL-2 infusion. The IL-2 response was prevented using the pulmonary vasodilator, papaverine. The infusion of IL-2 was associated with the generation of thromboxane A2(TxA2) in the effluent perfusate. Inhibition of TxA2 synthetase using Dazoxiben prevented the pulmonary vasoconstriction and edema response to IL-2. In addition, IL-2 had no effect on the transendothelial clearance of 125I-albumin. The results indicate that IL-2 causes pulmonary edema secondary to an increase in Ppc. The response is mediated by IL-2 stimulation of TxA2 generation from the lung.  相似文献   

6.
Thrombin-induced increase in albumin permeability across the endothelium   总被引:19,自引:0,他引:19  
We studied the effect of thrombin on albumin permeability across the endothelial monolayer in vitro. Bovine pulmonary artery endothelial cells were grown on micropore membranes. Morphologic analysis confirmed the presence of a confluent monolayer with interendothelial junctions. Albumin permeability was measured by the clearance of 125I-albumin across the endothelial monolayer. The control 125I-albumin clearance was 0.273 +/- 0.02 microliter/min. The native enzyme, alpha-thrombin (10(-6) to 10(-10) M), added to the luminal side of the endothelium produced concentration-dependent increases in albumin clearance (maximum clearance of 0.586 +/- 0.08 microliter/min at 10(-6) M). Gamma (gamma) thrombin (10(-6) M and 10(-8) M), which lacks the fibrinogen recognition site, also produced a concentration-dependent increase in albumin clearance similar to that observed with alpha-thrombin. Moreover, the two proteolytically inactive forms of the native enzyme, i-Pr2 P-alpha-thrombin and D-Phe-Pro-Arg-CH2-alpha-thrombin, increased the 125I-albumin clearance (0.610 +/- 0.09 microliter/min and 0.609 +/- 0.02 microliter/min for i-Pr2 P-alpha-thrombin and D-Phe-Pro-Arg-CH2-alpha-thrombin at 10(-6) M, respectively). Since the modified forms of thrombin lack the fibrinogen recognition and active serine protease sites, the results indicate that neither site is required for increased albumin permeability. The increase in albumin clearance with alpha-thrombin was not secondary to endothelial cell lysis because lactate dehydrogenase concentration in the medium following thrombin was not significantly different from baseline values. There was also no morphological evidence of cell lysis. Moreover, the increase in 125I-albumin clearance induced by alpha-thrombin was reversible by washing thrombin from the endothelium. The basis for the increased albumin permeability following the addition of alpha-thrombin appears to be a reversible change in endothelial cell shape with formation of intercellular gaps.  相似文献   

7.
Pentoxifylline (PTX), a methylxanthine, can suppress polymorphonuclear leukocyte (PMN) activation and attenuate sepsis-induced acute lung injury. We investigated whether PTX prevents non-PMN-dependent lung injury. First we studied four groups of granulocyte-depleted guinea pigs (control, PTX, Escherichia coli, and E. coli + PTX). Lung injury was assessed by wet-to-dry lung weight (W/D) ratio and lung tissue-to-plasma 125I-albumin ratio (albumin index, AI). The E. coli group showed a significant increase in the lung W/D ratio and AI compared with the control and PTX groups. However, PTX did not prevent the E. coli-induced increase in the lung W/D ratio and AI. Next we investigated the effects of PTX on endothelial cell monolayer permeability and adenosine 3',5'-cyclic monophosphate (cAMP) levels. Whereas E. coli lipopolysaccharide (LPS) alone increased the endothelial permeability, PMNs added to the endothelial monolayers and exposed to LPS enhanced the increase. PTX attenuated the permeability increase mediated by LPS-exposed PMNs. PTX did not prevent the LPS-induced increase in permeability when PMNs were not present, although PTX increased endothelial cell cAMP levels. These data demonstrate that 1) PTX does not prevent lung injury in granulocyte-depleted guinea pigs; 2) PTX does not prevent LPS-induced increases in endothelial cell permeability, despite increased cAMP levels; and 3) PTX attenuates PMN-dependent increases in endothelial cell permeability.  相似文献   

8.
Importance of vasoconstriction in lipid mediator-induced pulmonary edema   总被引:2,自引:0,他引:2  
Lipid mediators of inflammation cause pulmonary edema, yet it is unclear to what degree hemodynamic alterations or increased vascular permeability contribute to lung edema formation. The isolated rat lung preparation was used to examine the effect of leukotriene C4 (LTC4) and platelet-activating factor (PAF) on pulmonary arterial pressure (Ppa), lung microvascular pressure (Pmv), lung wet-to-dry weight ratio, and the 125I-albumin escape index. We first defined the response of the isolated rat lung perfused with protein-free salt solution to hydrodynamic stress by raising the lung outflow pressure. Sustained elevation of the lung outflow pressure less than 5.5 cmH2O (4.01 mmHg) caused a negligible increase in Ppa and wet-to-dry lung weight ratio. Elevation of outflow pressures greater than 7.5 cmH2O (5.4 mmHg) increased the vascular albumin escape index more than the lung wet-to-dry weight ratio. Dibutyryl adenosine 3',5'-cyclic monophosphate (db-cAMP) inhibited the increase in albumin escape index because of increased lung outflow pressure, suggesting perhaps a pressure-independent microvascular membrane effect of db-cAMP. Both LTC4 (2-micrograms bolus) and PAF (2-2,000 ng/ml perfusate) increased the albumin escape index in association with increases in Ppa and Pmv. Because the increased albumin escape index after LTC4 or PAF injection was largely accounted for by the increased vascular pressures and because db-cAMP and papaverine inhibited the rise in vascular pressures and in the albumin escape index, we conclude that vasoconstriction is an important contributor to LTC4- and PAF-induced edema formation in rat lungs.  相似文献   

9.
We studied the rate, the routes, and the mechanisms for protein clearance from the air spaces and lungs of 20 unanesthetized sheep over 144 h. We instilled 100 ml of autologous serum labeled with 125I-albumin into one lung. At the end of 24, 48, 96, or 144 h, the lungs were removed and the residual native protein and 125I-albumin in the air spaces were determined by bronchoalveolar lavage. Also the fraction of the instilled 125I-albumin remaining in the rest of the lung was measured in the lung homogenate. Clearance of the 125I-albumin from the lung into the plasma, lymph, thyroid, urine, and feces was also determined. The removal of both the 125I-albumin and the native protein from the air spaces was slow, following a monoexponential decline. The removal rate of the 125I-albumin from the air spaces was slightly but significantly faster (1.6%/h) than the clearance rate of the native protein (0.9%/h). Clearance of the 125I-albumin from the lung also followed a slow monoexponential decline at a rate of 1.4%/h. At all time periods, 75% of the 125I-albumin remaining in the lung was located in the air spaces, thus indicating that the pulmonary epithelium is the principal barrier to protein clearance from the normal lung. Macrophages appeared to play a minor role in alveolar protein clearance because the quantity of 125I-albumin present in the phagocytic cells in the air spaces was less than 1% of the instilled 125I-albumin at all time periods. However, macrophages may play some role in protein clearance after 48 h because we visualized phagolysosomes in macrophages, and there was an increase in free iodine in lung lavage, urine, thyroid, and feces after 48 h. However, gel electrophoretic studies showed that most of the 125I-albumin was cleared from the lung as an intact molecule, although only 24.7 +/- 4.7% of the 125I-albumin was cleared by the lymphatics.  相似文献   

10.
Solute conductance of blood-gas barrier in hamsters exposed to hyperoxia   总被引:1,自引:0,他引:1  
Hamsters were exposed to greater than 95% O2 continuously for up to 5 days to determine longitudinal changes in the diffusive conductance of the alveolar epithelium and capillary endothelium as a result of hyperoxia. Permeability X surface area (PS, cm3/s X 10(-4)) was measured by isolated, perfused lung techniques. Alveolar epithelium PS for [14C]sucrose and 125I-bovine serum albumin (BSA) were determined at seven exposure times. Control PS (sucrose) and PS(BSA) averaged 1.00 and 0.022, respectively. Values were unchanged until 4.5 days, when significant increases in both, but especially PS(BSA), occurred. After 5 days, PS values were 4.69 and 0.691, respectively. Capillary endothelium PS for 125I-BSA and fluoresceinisothiocyanate dextran-150 (D-150) were measured at four exposure times. Control endothelium PS(BSA) and PS(D-150) averaged 0.232 and 0.048, respectively. These values were also unchanged after 4 days but increased to 0.440 and 0.131 after 5 days. Wet lung weight significantly increased after only 4 days. Hyperoxia thus increased both endothelium and epithelium PS, but epithelium changes were much greater. These functional changes do not occur for several days, occur simultaneously, and follow increases in lung wet weight.  相似文献   

11.
The transvascular leakage of albumin in various organs and tissues was studied with a double isotope technique in rats anesthetized with sodium pentobarbital, given intraperitoneally or intravenously, and in unanesthetized (conscious) rats. 125I-labeled albumin and 131I-labeled albumin were injected into the tail vein 1 hr apart. The albumin permeability index in tissues and organs is indicated by the local ratio (Xa/Ya)/(Xb/Yb), where (Xa/Ya) is the ratio of 125I/131I-albumin activities per g of tissue and (Xb/Yb) is the ratio of 125I/131I-albumin activities per g of blood. If there is no passage of albumin across the capillary membrane over the 1-hr period of study, the permeability index will be equal to one. In unanesthetized rats, the liver, lung, kidney, femoral muscle, and femoral skin were regions with a high albumin permeability index (above 2). In these organs, intraperitoneal and intravenous anesthesia caused a decrease or no significant change of the albumin permeability index. There was no significant albumin leakage over 1-hr period (index not significantly different from 1) in the mesentery, abdominal muscle, abdominal skin, cremaster, heart, and brain of unanesthetized rats. Intraperitoneal anesthesia caused the albumin permeability index to increase to approximately 4 in the mesentery, abdominal muscle, and the abdominal skin, but not in the cremaster, heart, or brain. These results demonstrate that pentobarbital anesthesia when given into the peritoneal cavity causes a significant increase in albumin leakage in the abdominal region.  相似文献   

12.
We examined the effects of decreases in perfusate concentrations of calcium and magnesium on the pulmonary vascular permeability in the isolated perfused rabbit lung. The albumin permeability-surface area product (PS) and the albumin reflection coefficient (sigma) were determined in the same lung using 125I- and 131I-labeled albumin tracers. Decreases in vascular Ca2+ and Mg2+ concentrations were induced by adding ethylenediaminetetraacetic acid (EDTA) to the perfusate. Decreases in the concentration of these cations resulted in an increase in the PS from a control value of 1.18 +/- 0.13 X 10(-3) to 7.69 +/- 0.75 X 10(-3) cm3 X min-1 X g wet lung wt-1 and a decrease in the sigma from 0.96 +/- 0.01 to 0.74 +/- 0.02. The decrease in sigma suggests an increase in the calculated equivalent pore radius from 44 to 63 A. The results indicate that Ca2+ and Mg2+ play a role in the maintenance of normal pulmonary vascular permeability to proteins.  相似文献   

13.
Nitric oxide (.NO) attenuates hydrogen peroxide (H(2)O(2))-mediated injury in porcine pulmonary artery endothelial cells (PAECs) and modulates intracellular levels of cGMP and cAMP. We hypothesized that.NO attenuates H(2)O(2)-induced PAEC monolayer barrier dysfunction through cyclic nucleotide-dependent signaling mechanisms. To examine this hypothesis, cultured PAEC monolayers were treated with H(2)O(2), and barrier function was measured as transmonolayer albumin clearance. H(2)O(2) caused significant PAEC barrier dysfunction that was attenuated by intracellular as well as extracellular.NO generation.NO increased PAEC cGMP and cAMP levels, but treatment with inhibitors of soluble guanylate cyclase or protein kinase G did not abrogate.NO-mediated barrier protection. In contrast, H(2)O(2) decreased protein kinase A activity, and inhibiting protein kinase A abrogated the protective effect of.NO. H(2)O(2)-induced barrier dysfunction was not associated with decreased levels of cGMP or cAMP. 3-Isobutyl-1-methylxanthine and the cGMP analog 8-bromo-cGMP had little effect on H(2)O(2)-mediated endothelial barrier dysfunction, whereas 8-bromo-cAMP plus 3-isobutyl-1-methylxanthine was protective. These results indicate that.NO modulates vascular endothelial barrier function through cAMP-dependent signaling mechanisms.  相似文献   

14.
We employed ultrasonic nebulization for homogeneous alveolar tracer deposition into ventilated perfused rabbit lungs. (22)Na and (125)I-albumin transit kinetics were monitored on-line with gamma detectors placed around the lung and the perfusate reservoir. [(3)H]mannitol was measured by repetitive counting of perfusion fluid samples. Volume of the alveolar epithelial lining fluid was estimated with bronchoalveolar lavage with sodium-free isosmolar mannitol solutions. Sodium clearance rate was -2.2 +/- 0.3%/min. This rate was significantly reduced by preadministration of ouabain/amiloride and enhanced by pretreatment with aerosolized terbutaline. The (125)I-albumin clearance rate was -0.40 +/- 0.05%/min. The appearance of [(3)H]mannitol in the perfusate was not influenced by ouabain/amiloride or terbutaline but was markedly enhanced by pretreatment with aerosolized protamine. An epithelial lining fluid volume of 1.22 +/- 0.21 ml was calculated in control lungs. Fluid absorption rate was 1.23 microl x g lung weight(-1) x min(-1), which was blunted after pretreatment with ouabain/amiloride. We conclude that alveolar tracer loading by aerosolization is a feasible technique to assess alveolar epithelial barrier properties in aerated lungs. Data on active and passive sodium flux, paracellular solute transit, and net fluid absorption correspond well to those in previous studies in fluid-filled lungs; however, albumin clearance rates were markedly higher in the currently investigated aerated lungs.  相似文献   

15.
Experiments were designed to test the hypothesis that drugs which increase adenosine 3',5'-cyclic monophosphate (cAMP) in the lung would prevent the pulmonary hypertension and the increase in vascular permeability caused by the infusion of the oxidant lipid peroxide, tert-butyl hydroperoxide (t-bu-OOH), in isolated rabbit lungs perfused with Krebs-Henseleit buffer. Pretreatment with indomethacin or verapamil was also studied, since these drugs block the increase in pulmonary arterial pressure caused by t-bu-OOH. Indomethacin or verapamil prevented the pulmonary hypertension but did not prevent the increase in permeability caused by t-bu-OOH. Consequently, indomethacin or verapamil treatment partially reduced the gain in lung weight caused by t-bu-OOH. In contrast, pretreatment with isoproterenol, prostaglandin E1, or a cAMP analogue not only prevented the pulmonary hypertension but also inhibited the increase in vascular permeability caused by t-bu-OOH. Consequently, these drugs completely blocked the gain in lung weight caused by t-bu-OOH. Posttreatment with aminophylline or the cAMP analogue also significantly reduced the gain in lung weight caused by t-bu-OOH. These results indicate that pharmacological therapy can reduce the pulmonary hypertension and the increase in vascular permeability caused by the infusion of a lipid hydroperoxide. Since isoproterenol, aminophylline, prostaglandin E1, and a cAMP analogue all had similar effects, the results suggest that the likely common mechanism for their protective effect is an increase in cAMP.  相似文献   

16.
We compared the effects of inhibition of thromboxane synthetase with antagonism of thromboxane A2 (TxA2)/prostaglandin H2 receptors on the changes in pulmonary hemodynamics and pulmonary transvascular fluid and protein exchange following thrombin-induced pulmonary microembolism. Studies were made in chronically instrumented unanesthetized sheep prepared with lung lymph fistulas. Control thrombin challenged sheep (n = 5) were compared to animals pretreated with Dazoxiben (the Dazoxiben-thrombin group, n = 8) or animals pretreated with L-640,035 (the L-640,035-thrombin group, n = 5). In the control-thrombin sheep, plasma TxA2 concentration rose after thrombin and the response was inhibited in the Dazoxiben-thrombin group. The rise in the plasma TxA2 concentration was greater in the L-640,035-thrombin group than in the control-thrombin group. In the control-thrombin group, thrombin produced a sustained increase in the pulmonary transvascular protein clearance (pulmonary lymph flow x lymph/plasma protein concentration ratio) and pulmonary vascular resistance (PVR). In the Dazoxiben-thrombin group, increases in both pulmonary transvascular protein clearance and PVR after thrombin were less than in the control-thrombin group. In the L-640,035-thrombin group, thrombin initially increased pulmonary transvascular protein clearance and PVR to the same levels as the control group; however, both protein clearance and PVR declined with time, in contrast to the sustained responses in the control-thrombin group. These differences may be related to the initially greater increase in plasma TxA2 concentrations after thrombin in the L-640,035-treated animals. The results indicate that TxA2 plays a role in mediating the increases in PVR and contributes to increases in pulmonary transvascular fluid and protein exchange after thrombin-induced pulmonary microembolism.  相似文献   

17.
We infused A23187, a calcium ionophore, into the pulmonary circulation of dextran-salt-perfused isolated rabbit lungs to release endogenous arachidonic acid. This led to elevations in pulmonary arterial pressure and to pulmonary edema as measured by extravascular wet-to-dry weight ratios. The increase in pressure and edema was prevented by indomethacin, a cyclooxygenase enzyme inhibitor, and by 1-benzylimidazole, a selective inhibitor of thromboxane (Tx) A2 synthesis. Transvascular flux of 125I-albumin from vascular to extravascular spaces of the lung was not elevated by A23187 but was elevated by infusion of oleic acid, an agent known to produce permeability pulmonary edema. We confirmed that A23187 leads to elevations in cyclooxygenase products and that indomethacin and 1-benzylimidazole inhibit synthesis of all cyclooxygenase products and TxA2, respectively, by measuring perfusate levels of prostaglandin (PG) I2 as 6-ketoprostaglandin F1 alpha, PGE2, and PGF2 alpha and TxA2 as TxB2. We conclude that release of endogenous pulmonary arachidonic acid can lead to pulmonary edema from conversion of such arachidonic acid to cyclooxygenase products, most notably TxA2. This edema was most likely from a net hydrostatic accumulation of extravascular lung water with an unchanged permeability of the vascular space, since an index of permeability-surface area product (i.e., transvascular albumin flux) was not increased.  相似文献   

18.
The movement of macromolecules into and out of unventilated lung segments was evaluated in prematurely delivered and ventilated lambs. Seven lambs at 130 days gestational age had a bronchial balloon placed at birth before the first breath to obstruct the left lower lobe. Surfactant and 131I-albumin were instilled into the left lower lobe while surfactant and 125I-albumin were instilled into the remaining lung, and 70,000 molecular weight [3H]dextran was given into the vascular space at birth. Twenty-five percent of the lung by weight was not ventilated, and 24% of the total leak of dextran from the vascular space was recovered in the unventilated lungs at 3 h. An epithelial leak of protein from the two lung regions was documented by the loss of 11.4 and 18.4% of the labeled albumins in the nonventilated and ventilated lung regions, the appearance of 4.9 and 7.5% of the airway-instilled albumin in the vascular space from the nonventilated and ventilated lung regions, and the recovery of the labeled albumins in the carcasses of the lambs. The bidirectional flux of macromolecules was larger in the ventilated than in the nonventilated lung regions, indicating that ventilation can increase the leak of protein in the preterm lung. The lung areas that were never exposed to ventilation or oxygen also demonstrated a large bidirectional flux of macromolecules, a finding not present in the fetus, fullterm newborn, or adult. These findings indicate that ventilation is not solely responsible for the increased protein leak found in preterm lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We compared the pulmonary transvascular fluxes of transferrin and albumin in the intact sheep lung. Anesthetized sheep were prepared with lung lymph fistulas. The vascular blood pool was marked with 99mTc-erythrocytes, autologous transferrin was labeled with 113mIn, and albumin was labeled with 125I. Samples of blood, plasma, lymph, and lung were obtained up to 180 min after tracer infusion. Lymph tissue radioactivities were corrected for the intravascular component and expressed as extravascular-to-plasma concentration ratios. Clearance of transferrin and albumin from the plasma space followed a two-compartment model. The clearance rate constant was 2.1 +/- 0.1 x 10(-3) min for albumin and 2.4 +/- 0.1 x 10(-3) min for transferrin (P less than 0.05). Lymph-to-plasma ratios for albumin and transferrin were not different. However, the extravascular-to-plasma ratio for albumin was greater than transferrin (P less than 0.05). The lymph and lung data were deconvoluted for the plasma input function and fit to a two-compartment model. The results indicate that albumin and transferrin have similar permeabilities across the vascular barrier but have different pulmonary circulation to lymph kinetics because the extravascular volume of distribution of albumin is greater than transferrin.  相似文献   

20.
The active absorption of fluid from the airspaces of the lung is important for the resolution of clinical pulmonary edema. Although ENaC channels provide a major route for Na(+) absorption, the route of Cl(-) transport has been unclear. We applied a series of complementary approaches to define the role of Cl(-) transport in fluid clearance in the distal airspaces of the intact mouse lung, using wild-type and cystic fibrosis Delta F508 mice. Initial studies in wild-type mice showed marked inhibition of fluid clearance by Cl(-) channel inhibitors and Cl(-) ion substitution, providing evidence for a transcellular route for Cl(-) transport. In response to cAMP stimulation by isoproterenol, clearance was inhibited by the CFTR inhibitor glibenclamide in both wild-type mice and the normal human lung. Although isoproterenol markedly increased fluid absorption in wild-type mice, there was no effect in Delta F508 mice. Radioisotopic clearance studies done at 23 degrees C (to block active fluid absorption) showed approximately 20% clearance of (22)Na in 30 min both without and with isoproterenol. However, the clearance of (36)Cl was increased by 47% by isoproterenol in wild-type mice but was not changed in Delta F508 mice, providing independent evidence for involvement of CFTR in cAMP-stimulated Cl(-) transport. Further, CFTR played a major role in fluid clearance in a mouse model of acute volume-overload pulmonary edema. After infusion of saline (40% body weight), the lung wet-to-dry weight ratio increased by 28% in wild-type versus 64% in Delta F508 mice. These results provide direct evidence for a functionally important role for CFTR in the distal airspaces of the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号