首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coral reef fishes differ in their intrinsic vulnerability to fishing and rates of population recovery after cessation of fishing. We reviewed life history-based predictions about the vulnerability of different groups of coral reef fish and examined the empirical evidence for different rates of population recovery inside no-take marine reserves to (1) determine if the empirical data agree with predictions about vulnerability and (2) show plausible scenarios of recovery within fully protected reserves and periodically-harvested fishery closures. In general, larger-bodied carnivorous reef fishes are predicted to be more vulnerable to fishing while smaller-bodied species lower in the food web (e.g., some herbivores) are predicted to be less vulnerable. However, this prediction does not always hold true because of the considerable diversity of life history strategies in reef fishes. Long-term trends in reef fish population recovery inside no-take reserves are consistent with broad predictions about vulnerability, suggesting that moderately to highly vulnerable species will require a significantly longer time (decades) to attain local carrying capacity than less vulnerable species. We recommend: (1) expanding age-based demographic studies of economically and ecologically important reef fishes to improve estimates of vulnerability; (2) long term (20–40 years), if not permanent, protection of no-take reserves to allow full population recovery and maximum biomass export; (3) strict compliance to no-take reserves to avoid considerable delays in recovery; (4) carefully controlling the timing and intensity of harvesting periodic closures to ensure long-term fishery benefits; (5) the use of periodically-harvested closures together with, rather than instead of, permanent no-take reserves.  相似文献   

2.
With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia’s Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.  相似文献   

3.
Biological feedbacks generated through patterns of disturbance are vital for sustaining ecosystem states. Recent ocean warming and thermal anomalies have caused pantropical episodes of coral bleaching, which has led to widespread coral mortality and a range of subsequent effects on coral reef communities. Although the response of many reef‐associated fishes to major disturbance events on coral reefs is negative (e.g., reduced abundance and condition), parrotfishes show strong feedbacks after disturbance to living reef structure manifesting as increases in abundance. However, the mechanisms underlying this response are poorly understood. Using biochronological reconstructions of annual otolith (ear stone) growth from two ocean basins, we tested whether parrotfish growth was enhanced following bleaching‐related coral mortality, thus providing an organismal mechanism for demographic changes in populations. Both major feeding guilds of parrotfishes (scrapers and excavators) exhibited enhanced growth of individuals after bleaching that was decoupled from expected thermal performance, a pattern that was not evident in other reef fish taxa from the same environment. These results provide evidence for a more nuanced ecological feedback system—one where disturbance plays a key role in mediating parrotfish–benthos interactions. By influencing the biology of assemblages, disturbance can thereby stimulate change in parrotfish grazing intensity and ultimately reef geomorphology over time. This feedback cycle operated historically at within‐reef scales; however, our results demonstrate that the scale, magnitude, and severity of recent thermal events are entraining the biological responses of disparate communities to respond in synchrony. This may fundamentally alter feedbacks in the relationships between parrotfishes and reef systems.  相似文献   

4.
Parrotfishes and surgeonfishes perform important functional roles in the dynamics of coral reef systems. This is a consequence of their varied feeding behaviors ranging from targeted consumption of living plant material (primarily surgeonfishes) to feeding on detrital aggregates that are either scraped from the reef surface or excavated from the deeper reef substratum (primarily parrotfishes). Increased fishing pressure and widespread habitat destruction have led to population declines for several species of these two groups. Species-specific data on global distribution, population status, life history characteristics, and major threats were compiled for each of the 179 known species of parrotfishes and surgeonfishes to determine the likelihood of extinction of each species under the Categories and Criteria of the IUCN Red List of Threatened Species. Due in part to the extensive distributions of most species and the life history traits exhibited in these two families, only three (1.7%) of the species are listed at an elevated risk of global extinction. The majority of the parrotfishes and surgeonfishes (86%) are listed as Least Concern, 10% are listed as Data Deficient and 1% are listed as Near Threatened. The risk of localized extinction, however, is higher in some areas, particularly in the Coral Triangle region. The relatively low proportion of species globally listed in threatened Categories is highly encouraging, and some conservation successes are attributed to concentrated conservation efforts. However, with the growing realization of man's profound impact on the planet, conservation actions such as improved marine reserve networks, more stringent fishing regulations, and continued monitoring of the population status at the species and community levels are imperative for the prevention of species loss in these groups of important and iconic coral reef fishes.  相似文献   

5.
6.
With coral cover in decline on many Caribbean reefs, any process of coral mortality is of potential concern. While sparisomid parrotfishes are major grazers of Caribbean reefs and help control algal blooms, the fact that they also undertake corallivory has prompted some to question the rationale for their conservation. Here the weight of evidence for beneficial effects of parrotfishes, in terms of reducing algal cover and facilitating demographic processes in corals, and the deleterious effects of parrotfishes in terms of causing coral mortality and chronic stress, are reviewed. While elevated parrotfish density will likely increase the predation rate upon juvenile corals, the net effect appears to be positive in enhancing coral recruitment through removal of macroalgal competitors. Parrotfish corallivory can cause modest partial colony mortality in the most intensively grazed species of Montastraea but the generation and healing of bite scars appear to be in near equilibrium, even when coral cover is low. Whole colony mortality in adult corals can lead to complete exclusion of some delicate, lagoonal species of Porites from forereef environments but is only reported for one reef species (Porites astreoides), for one habitat (backreef), and with uncertain incidence (though likely <<10%). No deleterious effects of predation on coral growth or fecundity have been reported, though recovery of zooxanthellae after bleaching events may be retarded. The balance of evidence to date finds strong support for the herbivory role of parrotfishes in facilitating coral recruitment, growth, and fecundity. In contrast, no net deleterious effects of corallivory have been reported for reef corals. Corallivory is unlikely to constrain overall coral cover but contraints upon dwindling populations of the Montastraea annularis species complex are feasible and the role of parrotfishes as a vector of coral disease requires evaluation. However, any assertion that conservation practices should guard against protecting corallivorous parrotfishes appears to be unwarranted at this stage.  相似文献   

7.
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present‐day distributions of coral reef fish species. We investigated whether species‐specific responses are associated with life‐history traits. We collected a database of coral reef fish distribution together with life‐history traits for the Indo‐Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo‐Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.  相似文献   

8.
Migrating species are common within seascapes, but the potential for these movements to alter the populations and functional roles of non‐migrating species (e.g. by increasing predation) is rarely investigated. This study considers whether the presence of nursery habitats (mangroves and seagrass) simply enhances the abundance of nursery‐using parrotfishes and piscivores on nearby coral reefs, or also affects other parrotfishes. Data from 131 reef sites and multiple seascape configurations across 13 degrees of latitude were used to model correlations between biophysical variables, including nursery habitat connectivity, and the abundance and grazing pressure of both nursery‐using species and other parrotfishes and piscivore biomass. Connectivity to mangroves and dense seagrass was positively correlated with the biomass of nursery‐using species, but was also negatively correlated with non‐nursery parrotfish populations. This reduction may be caused indirectly by nursery habitats increasing confamilial competition and predation by nursery‐using piscivores, particularly affecting small parrotfishes settling directly onto reefs. As key reef grazers, parrotfishes affect coral demographics. Consequently, a spatial simulation model predicted the impacts after five years of changes in grazing pressure because of nursery habitat connectivity. The model demonstrated that high nursery connectivity was correlated to changes in grazing pressure on nearby reefs that could potentially lead to differences in coral cover of ~3–4% when compared to low connectivity reefs. However, the direction of this change depended on the seascapes’ characteristics. Historically, large‐bodied, nursery‐using parrotfish would have increased grazing in all nursery‐rich seascapes. Overfishing means that nursery availability may have spatially variable impacts on coral cover, influencing reserve design. This study suggests that nursery availability may directly and indirectly modify an ecological process, and alter an ecological cascade (migrating species increase predator and competitor abundances, affecting other grazers and consequently corals). Therefore, elucidating the multi‐species impacts of animal movements is required to better understand ecosystem functioning.  相似文献   

9.
Larger-bodied species in a wide range of taxonomic groups including mammals, fishes and birds tend to decline more steeply and are at greater risk of extinction. Yet, the diversity in life histories is governed not only by body size, but also by time-related traits. A key question is whether this size-dependency of vulnerability also holds, not just locally, but globally across a wider range of environments. We test the relative importance of size- and time-related life-history traits and fishing mortality in determining population declines and current exploitation status in tunas and their relatives. We use high-quality datasets of half a century of population trajectories combined with population-level fishing mortalities and life-history traits. Time-related traits (e.g. growth rate), rather than size-related traits (e.g. maximum size), better explain the extent and rate of declines and current exploitation status across tuna assemblages, after controlling for fishing mortality. Consequently, there is strong geographical patterning in population declines, such that populations with slower life histories (found at higher cooler latitudes) have declined most and more steeply and have a higher probability of being overfished than populations with faster life histories (found at tropical latitudes). Hence, the strong, temperature-driven, latitudinal gradients in life-history traits may underlie the global patterning of population declines, fisheries collapses and local extinctions.  相似文献   

10.
Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises.  相似文献   

11.
Fishery‐independent sampling was used to determine growth patterns, life span, mortality rates and timing of maturation and sex change in 12 common parrotfishes (Labridae: tribe Scarinae) from five genera (Calotomus, Cetoscarus, Chlorurus, Hipposcarus and Scarus) in Micronesia. Interspecific variation in life‐history traits was explored using multivariate analysis. All species displayed strong sex‐specific patterns of length‐at‐age among which males reached larger asymptotic lengths. There was a high level of correlation among life‐history traits across species. Relationships between length‐based and age‐based variables were weakest, with a tenuous link between maximum body size and life span. Cluster analysis based on similarities among life‐history traits demonstrated that species were significantly grouped at two major levels. The first grouping was driven by length‐based variables (lengths at maturity and sex change and maximum length) and separated the small‐ and large‐bodied species. Within these, species were grouped by age‐based variables (age at maturity, mortality and life span). Groupings based on demographic and life‐history features were independent of phylogenetic relationships at the given taxonomic level. The results reiterate that body size is an important characteristic differentiating species, but interspecific variation in age‐based traits complicates its use as a life‐history proxy. Detailed life‐history metrics should facilitate future quantitative assessments of vulnerability to overexploitation in multispecies fisheries.  相似文献   

12.
Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.  相似文献   

13.
Movement patterns of some coral reef fishes change with natural cycles (e.g., tidal, lunar and seasonal), resulting in short-term shifts in fish assemblages. We reviewed the literature on temporal changes in coral reef fish assemblages derived from underwater visual census (UVC) and found that movement was rarely considered in experimental design and analysis or as cause of change in interpretation of the results. Studies of vagile species, large individuals, species forming transient spawning aggregations and studies of fishes in contiguous habitats are most likely to be affected by such movements. Ignoring predictable patterns of movement associated with such natural cycles in survey design and analysis increases “unexplained” variation, making it more difficult to detect longer-term changes in fish assemblages and reducing the effectiveness of UVC as a monitoring tool.  相似文献   

14.
Parrotfish grazing scars on coral colonies were quantified across four reef zones at Lizard Island, Northern Great Barrier Reef (GBR). The abundance of parrotfish grazing scars was highest on reef flat and crest, with massive Porites spp. colonies having more parrotfish grazing scars than all other coral species combined. Massive Porites was the only coral type positively selected for grazing by parrotfishes in all four reef zones. The density of parrotfish grazing scars on massive Porites spp., and the rate of new scar formation, was highest on the reef crest and flat, reflecting the lower massive Porites cover and higher parrotfish abundance in these habitats. Overall, it appears that parrotfish predation pressure on corals could affect the abundance of preferred coral species, especially massive Porites spp, across the reef gradient. Parrotfish predation on corals may have a more important role on the GBR reefs than previously thought.  相似文献   

15.
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.  相似文献   

16.
For species with complex life histories such as scleractinian corals, processes occurring early in life can greatly influence the number of individuals entering the adult population. A plethora of studies have examined settlement patterns of coral larvae, mostly on artificial substrata, and the composition of adult corals across multiple spatial and temporal scales. However, relatively few studies have examined the spatial distribution of small (≤50 mm diameter) sexually immature corals on natural reef substrata. We, therefore, quantified the variation in the abundance, composition and size of juvenile corals (≤50 mm diameter) among 27 sites, nine reefs, and three latitudes spanning over 1000 km on Australia’s Great Barrier Reef. Overall, 2801 juveniles were recorded with a mean density of 6.9 (±0.3 SE) ind.m−2, with Acropora, Pocillopora, and Porites accounting for 84.1% of all juvenile corals surveyed. Size-class structure, orientation on the substrate and taxonomic composition of juvenile corals varied significantly among latitudinal sectors. The abundance of juvenile corals varied both within (6–13 ind.m−2) and among reefs (2.8–11.1 ind.m−2) but was fairly similar among latitudes (6.1–8.2 ind.m−2), despite marked latitudinal variation in larval supply and settlement rates previously found at this scale. Furthermore, the density of juvenile corals was negatively correlated with the biomass of scraping and excavating parrotfishes across all sites, revealing a potentially important role of parrotfishes in determining distribution patterns of juvenile corals on the Great Barrier Reef. While numerous studies have advocated the importance of parrotfishes for clearing space on the substrate to facilitate coral settlement, our results suggest that at high biomass they may have a detrimental effect on juvenile coral assemblages. There is, however, a clear need to directly quantify rates of mortality and growth of juvenile corals to understand the relative importance of these mechanisms in shaping juvenile, and consequently adult, coral assemblages.  相似文献   

17.
The variability in reef-fish species assemblages was examined at three geographic locations in the Philippines (Apo, Abra and Patn), each showing varying levels of disturbances (low to high) at two depths, shallow-water reef (SWR; 8–20 m) and the upper mesophotic coral ecosystem (MCE; 30–35 m). Fish species assemblages varied among locations and between depths. Differences in fish assemblages among locations corresponded to the variability in benthic assemblages and levels of disturbances, wherein locations with higher coral cover and less disturbances had the highest fish species richness, abundance and biomass. Variation in fish assemblages between depths was also associated with changes in benthic assemblages and possibly inaccessibility to local fishing techniques. Fish species richness decreased with depth in all locations, but biomass increased only in the MCEs of Apo and Abra, which is a similar pattern exhibited in many MCEs. Our results suggest that despite location differences, depth had a relatively consistent influence on fish species assemblages, particularly in locations exposed to low and intermediate disturbance. Under high disturbance, MCEs exhibit similar vulnerability to SWRs.  相似文献   

18.
The ecology of coral reefs is rapidly shifting from historical baselines. One key-question is whether under these new, less favourable ecological conditions, coral reefs will be able to sustain key geo-ecological processes such as the capacity to accumulate carbonate structure. Here, we use data from 34 Caribbean reef sites to examine how the carbonate production, net erosion and net carbonate budgets, as well as the organisms underlying these processes, have changed over the past 15 years in the absence of further severe acute disturbances. We find that despite fundamental benthic ecological changes, these ecologically shifted coral assemblages have exhibited a modest but significant increase in their net carbonate budgets over the past 15 years. However, contrary to expectations this trend was driven by a decrease in erosion pressure, largely resulting from changes in the abundance and size-frequency distribution of parrotfishes, and not by an increase in rates of coral carbonate production. Although in the short term, the carbonate budgets seem to have benefitted marginally from reduced parrotfish erosion, the absence of these key substrate grazers, particularly of larger individuals, is unlikely to be conducive to reef recovery and will thus probably lock these reefs into low budget states.  相似文献   

19.
The global decline in biodiversity is causing increasing concern about the effects of biodiversity loss on ecosystem services such as productivity. Biodiversity has been hypothesised to be important in maintaining productivity of biological assemblages because niche complementarity and facilitation among the constituent species can result in more efficient use of resources. However, these conclusions are primarily based on studies with plant communities, and the relationship between diversity and productivity at higher trophic levels is largely unknown, especially in the marine environment. Here, we used a manipulative field experiment to test the effects of species richness and species identity on biomass accumulation in coral reef fish assemblages at Lizard Island. Small patch reefs were stocked with a total of 30 juveniles belonging to three planktivorous damselfish (genus Pomacentrus) according to three different levels of fish species richness (one, two and three species) and seven different combinations of fish species. Species richness had no effect on the relative growth in this assemblage after 18 days, but relative growth differed among individual fish species and the different combinations of species. Patterns of increase in biomass were best explained by species-specific differences and variable effects of intra- and interspecific competition on growth. These results suggest that niche complementarity and facilitation are not the most influential drivers of total productivity within this guild of planktivorous fishes. Total productivity may be resilient to declining reef fish biodiversity, but this will depend on which species are lost and on the life-history traits of remaining species.  相似文献   

20.
SYNOPSIS. TWO studies from the Pleistocene coral reef fossilrecord demonstrate the sensitivity of reef communities to bothlocal environmental parameters and habitat reduction. In thefirst study, Pleistocene reef coral assemblages from Papua NewGuinea show pronounced constancy in taxonomic composition andspecies diversity between 125 and 30 ka (thousand years). Spatialdifferences in reef coral community composition during successivehigh stands of sea level were greater among sites of the sameage than among reefs of different ages, even though global changesin sea level, atmospheric CO2 concentration, tropical benthichabitat area, and temperature varied at each high sea levelstand. Thus, local environmental variation associated with runofffrom the land had greater influence on reef coral communitycomposition than variation in global climate and sea level.Proportional sampling from a regional species pool does notexplain the temporal persistence and local factors likely playeda major role. Examination of coral reef response to global changeshould not only involve regional diversity patterns but alsolocal ecological factors, and the interactive effects of localand global environmental change. In the second study, Pleistocene extinction of two widespread,strictly insular species of Caribbean reef corals, Pocilloporacf. palmata (Geister, 1975) and an organ-pipe growth form ofthe Montastraea "annularis" species complex, was natural anddid not involve gradual decrease in range and abundance, butwas sudden (thousands of years) throughout the entire range.One explanation is that sea level drop at the Last Glacial Maximum(LGM—18 ka) resulted in a threshold of habitat reduction,and caused disruption of coral metapopulation structure. Thresholdeffects predicted by metapopulation dynamics may also explainthe apparent paradox of the large amount of degraded modernreef habitat without any known modern-day reef coral extinctions.The rapid extinction of widespread Pleistocene species emphasizesthe vulnerability of reef corals in the face of present rapidenvironmental and climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号