首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Efficient and genotype-independent in vitro regeneration is an essential prerequisite for incremental trait improvement in peanut (Arachis hypogaea L.) via genetic transformation. We have optimized a facile and rapid method to obtain direct shoot organogenesis from cotyledonary node (CN) explants excised from peanut seedlings germinated on cytokinin-supplemented Murashige and Skoog (MS) basal salt medium. Starting with mature embryos, shoot induction occurred in approximately 7 weeks, followed by 4 weeks for rooting of excised shoots and 3 weeks of acclimatization of regenerated plantlets in soil. The regeneration and transformation system described here is time-efficient, yielding greenhouse-acclimatized plantlets within 14 weeks, in contrast to 12–14 months required for initiating and regenerating somatic embryogenic cultures, currently the most tractable method available for peanut transformation. The highest shoot induction frequency and shoot quality was obtained with 6.66 μM 6-benzylaminopurine, followed by adequate root induction at 5.37 μM α-Naphthaleneacetic acid. New Mexican Valencia A was chosen for Agrobacterium-mediated transformation. Stable GUS expression from pWBvec10a was obtained at a transformation rate of 1.25?%. Furthermore, results from genomic PCR and Southern blot analyses showed that 14 out of 576 putative transgenic regenerants contained transgene pSag12::IPT, therefore yielding a total transformation rate of 2.43?%. The cotyledonary node-based direct regeneration system described here is time-efficient and amenable to Agrobacterium-mediated transformation, and therefore should be further explored for peanut transgenic improvement.  相似文献   

5.
6.
7.
8.
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.  相似文献   

9.
10.
11.
12.
13.
Soil salinity is one of the most important environmental factors responsible for serious agricultural problems. Tomato salt tolerance may be improved by genetic selection and by the use of adapted physiological tools. The aim of this study was to investigate the impact of exogenous application of salicylic acid (SA 0.01 mM) and calcium sulphate (CaSO4 5 mM), singly or in combination, on plant growth, photosynthetic pigments, nutritional behaviour and some metabolic parameters (total chlorophyll, carotenoids, soluble sugars, proline and lipid peroxidation) of two tomato cultivars (cv. Super Marmande and cv. Red River) exposed to salt stress (100 mM NaCl). Application of 100 mM NaCl reduced plant growth, total chlorophyll and carotenoid contents. Salt stress also induced an accumulation of Na+, a decrease in K+ and Ca2 + concentration and root sugar level, an increase in malondialdehyde (MDA) and proline concentration. Deleterious impact of salinity was related to modification in ion content rather than modification in the plant water status. Exogenous application of SA or Ca alone improved plant behaviour in the presence of NaCl. Nevertheless, the best results in terms of growth, photosynthetic pigment concentrations and mineral nutrition (limitation of Na+ accumulation and maintenance of K+ and Ca2 + content) were obtained in response to the combined SA + Ca treatment. Although the involved physiological parameters varied depending on the considered cultivar, our results suggest that Ca2 + and SA may interact to reduce the stress experienced by the plant in the presence of NaCl.  相似文献   

14.
The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号