Lipofuscin accumulates with age in a variety of highly metabolically active cells, including the retinal pigment epithelium (RPE) of the eye, where its photoreactivity has the potential for cellular damage. The aim of this study was to assess the phototoxic potential of lipofuscin in the retina. RPE cell cultures were fed isolated lipofuscin granules and maintained in basal medium for 7 d. Control cells lacking granules were cultured in an identical manner. Cultures were either maintained in the dark or exposed to visible light (2.8 mWcm2) at 37 degrees C for up to 48 h. Cells were subsequently assessed for alterations in cell morphology, cell viability, lysosomal stability, lipid peroxidation, and protein oxidation. Exposure of lipofuscin-fed cells to short wavelength visible light (390-550 nm) caused lipid peroxidation (increased levels of malondialdehyde and 4-hydroxy-nonenal), protein oxidation (protein carbonyl formation), loss of lysosomal integrity, cytoplasmic vacuolation, and membrane blebbing culminating in cell death. This effect was wavelength-dependent because light exposure at 550 to 800 nm had no adverse effect on lipofuscin-loaded cells. These results confirm the photoxicity of lipofuscin in a cellular system and implicate it in cell dysfunction such as occurs in ageing and retinal diseases. 相似文献
We have applied patch-clamp techniques to on-cell and excised-membrane patches from human retinal pigment epithelial cells in tissue culture. Single-channel currents from at least four ion channel types were observed: three or more potassium-selective channels with single-channel slope conductances near 100, 45, and 25 pS as measured in on-cell patches with physiological saline in the pipette, and a relatively nonselective channel with subconductance states, which has a main-state conductance of approximately 300 pS at physiological ion concentrations. The permeability ratios, PK/PNa, measured in excised patches were 21 for the 100-pS channels, 3 for the 25-pS channels, and 0.8 for the 300-pS nonselective channel. The 45-pS channels appeared to be of at least two types, with PK/PNa's of approximately 41 for one type and 3 for the other. The potassium-selective channels were spontaneously active at all potentials examined. The average open time for these channels ranged from a few milliseconds to many tens of milliseconds. No consistent trend relating potassium-selective channel kinetics to membrane potential was apparent, which suggests that channel activity was not regulated by the membrane potential. In contrast to the potassium-selective channels, the activity of the nonselective channel was voltage dependent: the open probability of this channel declined to low values at large positive or negative membrane potentials and was maximal near zero. Single-channel conductances observed at several symmetrical KCl concentrations have been fitted with Michaelis-Menten curves in order to estimate maximum channel conductances and ion-binding constants for the different channel types. The channels we have recorded are probably responsible for the previously observed potassium permeability of the retinal pigment epithelium apical membrane. 相似文献
Retinal pigment epithelial cells, which form one aspect of the blood-retinal barrier, take up iron in association with transferrin by a typical receptor-mediated mechanism (Hunt et al., 1989. J. Cell Sci. 92:655-666). This iron is dissociated from transferrin in a low pH environment and uptake is sensitive to agents that inhibit endosomal acidification. The dissociated iron enters the cytoplasm as a low molecular weight (less than 10 kD) component and subsequently binds to ferritin. No evidence for recycling of iron in association with transferrin was found. Nevertheless, much of the iron that is taken up is recycled to the extracellular medium, primarily from the low molecular weight pool. This release of iron is not sensitive to inhibitors of energy production or of vesicular acidification but is increased up to a maximum of about 40% of the total 55Fe incorporated when cells are incubated with serum or the medium is changed. When a short loading time for 55Fe from 55Fe-transferrin is used (i.e., when the low molecular weight pool is proportionately larger), a much larger fraction of the cell-associated radiolabel is released than when longer loading times are used. The data suggest that a releasable intracellular iron pool is in equilibrium with the externalized material. The released iron may be separated into a high and a low molecular weight component. The former is similar on polyacrylamide gel electrophoresis to ferritin although it cannot be immune precipitated by anti-ferritin antibodies. The low molecular weight 55Fe which is heterogeneous in nature can be bound by external apo-transferrin and may represent a form that can be taken up by cells beyond the blood-retinal barrier. 相似文献
Retinal pigment epithelial (RPE) cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP), the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC) and RPE derived from the hESC (hESC-RPE). Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy. 相似文献
The human retinal pigment epithelium (RPE) is a potential target tissue for directed transfer of candidate genes to treat age-related macular degeneration (AMD). The RPE is uniquely suited to gene therapy protocols that use liposome-mediated DNA transfer because of its high intrinsic phagocytic function in vivo. In these studies, we examined the efficacy of human RPE cell uptake and expression of the green fluorescent protein (GFP) and neomycin resistance marker genes by polyplex-mediated gene transfer in vitro. The effects of varying DNA and polyplex concentration and ratios on GFP transgene expression were examined. A narrow range of experimental conditions were found to maximize transgene expression; most important were the DNA concentration and the DNA:polyplex ratio. The transfection efficiency for human RPE cells was reproducibly 20% in vitro by this method and reached a maximum level of expression after 48 h. There was a rapid decline in gene expression over 2 weeks following polyplex-mediated gene transfer, but stable integration does occur at low frequencies with and without selection. 相似文献
Tunneling nanotubes (TNTs) may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE) cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis.
Methodology and Principal Findings
Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 µm. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca2+ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells.
Conclusions and Significance
Our observations indicate that human RPE cell line ARPE-19 cells communicate by tunneling nanotubes and can support different types of intercellular traffic. 相似文献
In early age-related macular degeneration (AMD), lipid-containing deposits (drusen) accumulate in Bruch's membrane underlying the retinal pigment epithelium (RPE). Recent studies indicate that apolipoprotein E (apoE) may play a role in lipid trafficking in AMD. Compared with the apoE3 allele, the apoE4 and apoE2 alleles are associated with decreased and increased risk for AMD, respectively; drusen contain high levels of apoE, and apoE null mice develop lipid deposits in Bruch's membrane similar to those observed in AMD. Primary cultures of human RPE cells expressing the apoE3 allele were grown on Transwell culture plates. Western blotting, ELISA assay, and mass spectrometry confirmed that apoE3 was secreted into the apical and basal chambers and that secretion was upregulated by thyroid hormone, 9-cis-retinoic acid, and 22(R)-hydroxycholesterol. In addition, basally secreted apoE associated with exogenously added HDL. These results indicate that apoE secretion can be regulated by specific hormones and that apoE associates with HDL. The findings are consistent with a role for apoE in lipid trafficking through Bruch's membrane and may be relevant to AMD. 相似文献
Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly. Degeneration of retinal pigment epithelial (RPE) cells is a crucial causative factor responsible for the onset and progression of AMD. A2E, a major component of toxic lipofuscin implicated in AMD, is deposited in RPE cells with age. However, the mechanism whereby A2E may contribute to the pathogenesis of AMD remains unclear. We demonstrated that A2E was a danger signal of RPE cells, which induced autophagy and decreased cell viability in a concentration- and time-dependent manner. Within 15 min after the treatment of RPE with 25 μM A2E, the induction of autophagosome was detected by transmission electron microscopy. After continuous incubating RPE cells with A2E, intense punctate staining of LC3 and increased expression of LC3-II and Beclin-1 were identified. Meanwhile, the levels of intercellular adhesion molecule (ICAM), interleukin (IL)1β, IL2, IL-6, IL-8, IL-17A, IL-22, macrophage cationic peptide (MCP)-1, stromal cell-derived factor (SDF)-1, and vascular endothelial growth factor A (VEGFA) were elevated. The autophagic inhibitor 3-methyladenine (3-MA) and activator rapamycin were also used to verify the effect of autophagy on RPE cells against A2E. Our results revealed that 3-MA decreased the autophagosomes and LC3 puncta induced by A2E, increased inflammation-associated protein expression including ICAM, IL1β, IL2, IL-6, IL-8, IL-17A, IL-22, and SDF-1, and upregulated VEGFA expression. Whereas rapamycin augmented the A2E-mediated autophagy, attenuated protein expression of inflammation-associated and angiogenic factors, and blocked the Akt/mTOR pathway. Taken together, A2E induces autophagy in RPE cells at the early stage of incubation, and this autophagic response can be inhibited by 3-MA or augmented by rapamycin via the mTOR pathway. The enhancement of autophagy has a protective role in RPE cells against the adverse effects of A2E by reducing the secretion of inflammatory cytokines and VEGFA.Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among elderly people and is becoming a major public health issue.1, 2, 3 The pathological change in AMD is located in the macula, which is the central and posterior portion of the retina containing the retinal pigment epithelium (RPE) and photoreceptors. Central visual impairment caused by AMD results from the loss or damage of RPE cells and the photoreceptors.4 Currently, the etiology and pathogenesis of AMD is not fully understood and there is no effective treatment.5, 6 A chronic aberrant inflammatory response in RPE cells is considered to be one of the major factors contributing to the pathogenesis of AMD.7, 8Lipofuscin is a complex aggregate of fluorescent material, formed in a variety of tissues but best studied in the eye.9 The buildup of lipofuscin in RPE cells has been identified as a byproduct of the visual cycle, and is derived from the ingestion of photoreceptor outer segments, which has been implicated in several retinal degenerations, including AMD.10, 11 As revealed by spectroscopic analyses, the bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E) is the first isolated, major fluorophore from RPE lipofuscin. Numerous in vitro and in vivo studies have found that toxicity effects associated with this compound, and A2E is involved in the pathological pathways of AMD, especially the inflammatory response.12, 13 Although several studies have suggested that A2E may induce cytokine production, activate inflammasomes or the complement system in RPE cells, and contribute to chronic inflammation in AMD,14, 15, 16 the exact mechanisms by which A2E exerts an effect on RPE cells remains unclear.Autophagy is an evolutionarily conserved cellular housekeeping process that removes damaged organelles and protein aggregates that are unnecessary or dysfunctional to the cells by delivering cytoplasmic substrates to lysosomes for degeneration.17 In addition to turnover of cellular components, autophagy is involved in development, differentiation, and tissue remodeling in various organisms.18 The failure of autophagy in aged postmitotic cells, including RPE cells, can result in the accumulation of aggregation-prone proteins, cellular degeneration, and finally the induction of cell death.19, 20 Currently, a large amount of evidence indicates that autophagy is associated with RPE damage and AMD pathology.21, 22, 23 In RPE cells, the preservation of autophagic activity, together with functional lysosomal enzymes, is a prerequisite to prevent detrimental intracellular accumulation of damaged molecules.21 A well-functioning proteolytic machine guarantees that there is sufficient capacity to handle damaged proteins and organelles.24 In addition, Saadat KA et al.25 have shown that RPE cell death is induced in the presence of A2E and the autophagic inhibitor 3-methyladenine (3-MA). Nevertheless, whether the autophagic pathway has effects on A2E-induced cell damage through the production of chemokines and cytokines remains unclear. Furthermore, the relationship between A2E and autophagy and how this interaction influences RPE cells'' inflammatory response requires further clarification.Therefore, the protective effect of autophagy on human RPE cells against lipofuscin fluorophore A2E-induced cell death and the inflammatory response were studied in the present article. This work facilitates our understanding of the role of autophagy in the survival and death of RPE cells accumulating excess lipofuscin and provides a new strategy in the treatment of AMD. 相似文献
Lipofuscin contains fluorophores, which represent a biomarker for cellular aging. Although it remains unsubstantiated clinically, experimental results support that the accumulation of lipofuscin is related to an increased risk of choroidal neovascularization due to age-related macular degeneration, a leading cause of legal blindness. Here, we report that a major lipofuscin component, A2E, activates the retinoic acid receptor (RAR). In vitro experiments using luciferase reporter assay, competitional binding assay, analysis of target genes, and chromatin immunoprecipitation (ChIP) assay strongly suggest that A2E is a bona fide ligand for RAR and induces sustained activation of RAR target genes. A2E-induced vascular endothelial growth factor (VEGF) expression in a human retinal pigment epithelial cell line (ARPE-19) and RAR antagonist blocked the up-regulation of VEGF. The conditioned medium of A2E-treated ARPE-19 cells induced tube formation in human umbilical vascular endothelial cells, which was blocked by the RAR antagonist and anti-VEGF antibody. These results suggest that A2E accumulation results in the phenotypic alteration of retinal pigment epithelial cells, predisposing the environment to choroidal neovascularization development. This is mediated through the agonistic function of A2E, at least in part. The results of this study provide a novel potential therapeutic target for this incurable condition. 相似文献
The retinal pigment epithelium (RPE) constitutes the blood-retinal barrier, whose function is impaired in various pathological conditions, including cerebral malaria, a lethal complication of Plasmodium falciparum infection. Prostaglandin (PG) D2 is abundantly produced in the brain to regulate sleep responses. Moreover, PGD2 is a potential factor derived from intra-erythrocyte falciparum parasites. Heme oxygenase-1 (HO-1) is important for iron homeostasis via catalysis of heme degradation to release iron, carbon monoxide and biliverdin/bilirubin, and may influence iron supply to the intra-erythrocyte falciparum parasites. Here, we showed that treatment of human RPE cell lines, ARPE-19 and D407, with PGD2 significantly increased the expression levels of HO-1 mRNA, in a dose- and time-dependent manner. Transient expression assays showed that PGD2 treatment increased the HO-1-gene promoter activity through the enhancer sequence, containing a Maf-recognition element. Thus, PGD2 may contribute to the maintenance of heme homeostasis in the brain by inducing HO-1 expression. 相似文献
Gene expression of platelet-derived growth factor (PDGF) and its receptors in cultured human retinal pigment epithelial (RPE) cells was studied by using semiquantitative polymerase chain reaction. The RPE cells were found to express PDGF A- and B-chain genes as well as alpha- and beta-receptor genes with dominant expression of B-chain and beta-receptor isoforms. Phorbol myristate acetate (PMA) and thrombin increased the expression of PDGF B-chain gene to 19.8 +/- 1.75 and 15.9 +/- 1.84 fold (n = 3) of the control without affecting beta-receptor gene expression. PDGF produced by the RPE cells may play an important role in the pathogenesis of some ocular proliferative diseases. 相似文献
Membrane potential and ionic currents were studied in cultured rabbit retinal pigment epithelial (RPE) cells using whole-cell patch clamp and perforated-patch recording techniques. RPE cells exhibited both outward and inward voltage-dependent currents and had a mean membrane capacitance of 26±12 pF (sd, n=92). The resting membrane potential averaged ?31±15 mV (n=37), but it was as high as ?60 mV in some cells. When K+ was the principal cation in the recording electrode, depolarization-activated outward currents were apparent in 91% of cells studied. Tail current analysis revealed that the outward currents were primarily K+ selective. The most frequently observed outward K+ current was a voltage- and time-dependent outward current (IK) which resembled the delayed rectifier K+ current described in other cells. IK was blocked by tetraethylammonium ions (TEA) and barium (Ba2+) and reduced by 4-aminopyridine (4-AP). In a few cells (3–4%), depolarization to ?50 mV or more negative potentials evoked an outwardly rectifying K+ current (IKt) which showed more rapid inactivation at depolarized potentials. Inwardly rectifying K+ current (IKI) was also present in 41% of cells. IKI was blocked by extracellular Ba2+ or Cs+ and exhibited time-dependent decay, due to Na+ blockade, at negative potentials. We conclude that cultured rabbit RPE cells exhibit at least three voltage-dependent K+ currents. The K+ conductances reported here may provide conductive pathways important in maintaining ion and fluid homeostasis in the subretinal space. 相似文献
The presence of the age pigment lipofuscin is associated with numerous age-related diseases. In the retina lipofuscin is located within the pigment epithelium where it is exposed to high oxygen and visible light, a prime environment for the generation of reactive oxygen species. Although we, and others, have demonstrated that retinal lipofuscin is a photoinducible generator of reactive oxygen species it is unclear how this may translate into cell damage. The position of lipofuscin within the lysosome infers that irradiated lipofuscin is liable to cause oxidative damage to either the lysosomal membrane or the lysosomal enzymes. We have found that illumination of lipofuscin with visible light is capable of extragranular lipid peroxidation, enzyme inactivation, and protein oxidation. These effects, which were pH-dependent, were significantly reduced by the addition of the antioxidants, superoxide dismutase and 1,4-diazabicyclo(2,2,2)-octane, confirming a role for both the superoxide anion and singlet oxygen. We postulate that lipofuscin may compromise retinal cell function by causing loss of lysosomal integrity and that this may be a major contributory factor to the pathology associated with retinal light damage and diseases such as age-related macular degeneration. 相似文献
We have examined questions related to the biosynthesis of A2E, a fluorophore that accumulates in retinal pigment epithelial cells with aging and in some retinal disorders. The use of in vitro preparations revealed that detectable levels of A2-PE, the A2E precursor, are formed within photoreceptor outer segments following light-induced release of endogenous all-trans-retinal. Moreover, experiments in vivo demonstrated that the formation of A2-PE in photoreceptor outer segment membrane was augmented by exposing rats to bright light. Whereas the generation of A2E from A2-PE by acid hydrolysis was found to occur very slowly, the detection in outer segments of a phosphodiesterase activity that can convert A2-PE to A2E may indicate that some portion of the A2-PE that forms in the outer segment membrane may undergo hydrolytic cleavage before internalization by the retinal pigment epithelial cell. The identities of additional minor components of retinal pigment epithelium lipofuscin, A2E isomers with cis olefins at positions other than the C13-C14 double bond, are also described. 相似文献
Metabolic labeling was evaluated, using both 13C6-Arg and 13C6, 15N2-Lys amino acids, for a primary human retinal pigment epithelial cell (hRPE) culture prepared from an autopsy eye of an 81 year old donor. Satisfactory incorporation (>90%) was achieved with both stable isotope labeled amino acids after four passages (roughly 7 population doublings). The degree of incorporation was found to be efficient with both amino acids as well as in different proteins. The presence of 10% whole serum in the culture medium did not interfere with the incorporation of the exogenous stable isotope labeled amino acids. Metabolic labeling of these human primary retinal pigment epithelial cells was further tested to quantify protein ratios between proliferating and resting cells using a combination of 2-DG and MALDI-TOF-TOF/MS analysis. Using computational data processing and analysis, we obtained accurate protein ratio measurement for every single identified protein (156 proteins) in the 2-Dg array. Of these 156 proteins, 12 proteins were found significantly increased in dividing versus resting cells by at least a factor of 1.5 while 13 other proteins were found increased in resting versus dividing cells by at least the same fold. Most of these differentially expressed proteins are directly involved in cell proliferation, protein synthesis, and actin-remodeling and differentiation. 相似文献
Resveratrol (RES) is a polyphenol with increasing interest for its inhibitory effects on a wide variety of viruses. Zika virus (ZIKV) is an arbovirus which causes a broad spectrum of ophthalmological manifestations in humans. Currently there is no certified therapy or vaccine to treat it, thus it has become a major global health threat. Retinal pigment epithelium (RPE) is highly permissive and susceptible to ZIKV. This work explored the protective effects of RES on ZIKV-infected human RPE cells. RES treatment resulted in a significant reduction of infectious viral particles in infected male ARPE-19 and female hTERT-RPE1 cells. This protection was positively influenced by the action of RES on mitochondrial dynamics. Also, docking studies predicted that RES has a high affinity for two enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis and viral polymerase. This evidence suggests that RES might be a potential antiviral agent to treat ZIKV-induced ocular abnormalities.