首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
The aim of the present study was to investigate the relationship of MET copy number (CN) and MET mRNA expression to other molecular alterations, clinicopathologic characteristics, and survival of patients with resected non–small cell lung cancer. One hundred fifty-one paired surgical samples of tumor and tumor-distant normal lung tissues were analyzed by comparative quantitative polymerase chain reaction (PCR) methods with commercially available assays and the CopyCaller software v. 1.0 for post-PCR data processing (downloadable from www.appliedbiosystems.com). MET copy gain (set as more than 3.0 copies per cell) was found in 18.5% of the samples and occurred more frequently in the adenocarcinomas (ADCs) with an increased epidermal growth factor receptor (EGFR) or human epidermal growth factor receptor 2 (HER2) CN (P = .001 and .030 for EGFR and HER2, respectively) and in the ADCs with EGFR activating mutations (P = .051) but did not correlate with KRAS dosage or mutational status. MET mRNA level was 1.76-fold higher [95% confidence interval (CI), 1.29-2.40] in the tumor compared to unaffected lung tissue and associated significantly with MET CN (beta coefficient, 1.51; 95% CI, 1.22-1.87; P < .001). In the multivariable analysis, patients diagnosed with ADC with increased MET CN had a significantly higher risk of disease recurrence (hazard ratio, 1.76; 95% CI, 1.20-2.57; P = .004). An increased MET CN in combination with histologic type appears to be a prognostic factor in patients with ADC after a curative surgery.  相似文献   

2.

Purpose

This study evaluated occurrence and potential clinical significance of intratumoral EGFR mutational heterogeneity in Chinese patients with non-small cell lung cancer (NSCLC).

Materials and Methods

Eighty-five stage IIIa-IV NSCLC patients who had undergone palliative surgical resection were included in this study. Of these, 45 patients carried EGFR mutations (group-M) and 40 patients were wild-type (group-W). Each tumor sample was microdissected to yield 28–34 tumor foci and Intratumoral EGFR mutation were determined using Denaturing High Performance Liquid Chromatography (DHPLC) and Amplification Refractory Mutation System (ARMS). EGFR copy numbers were measured using fluorescence in situ hybridization (FISH).

Results

Microdissection yielded 1,431 tumor foci from EGFR mutant patients (group-M) and 1,238 foci from wild-type patients (group-W). The EGFR mutant frequencies in group-M were 80.6% (1,154/1,431) and 87.1% (1,247/1,431) using DHPLC and ARMS, respectively. A combination of EGFR-mutated and wild-type cells was detected in 32.9% (28/85) of samples by DHPLC and 28.2% (24/85) by ARMS, supporting the occurrence of intratumoral heterogeneity. Thirty-one patients (36.5%) were identified as EGFR FISH-positive. Patients harboring intratumoral mutational heterogeneity possessed lower EGFR copy numbers than those tumors contained mutant cells alone (16.7% vs. 71.0%, P<0.05). Among 26 patients who had received EGFR-TKIs, the mean EGFR mutation content was higher in patients showing partial response (86.1%) or stable disease (48.7%) compared with patients experiencing progressive disease (6.0%) (P = 0.001). There also showed relationship between progression-free survival (PFS) and different content of EGFR mutation groups (pure wild type EGFR, EGFR mutation with heterogeneity and pure mutated EGFR) (P = 0.001).

Conclusion

Approximately 30% of patients presented intratumoral EGFR mutational heterogeneity, accompanying with relatively low EGFR copy number. EGFR mutant content was correlated with the response and prognosis of EGFR-TKIs.  相似文献   

3.
Lung cancer is a leading cause of death in both men and women globally. The recent development of tumor molecular profiling has opened opportunities for targeted therapies for lung adenocarcinoma (LUAD) patients. However, the lack of access to molecular profiling or cost and turnaround time associated with it could hinder oncologists' willingness to order frequent molecular tests, limiting potential benefits from precision medicine. In this study, we developed a weakly supervised deep learning model for predicting somatic mutations of LUAD patients based on formalin-fixed paraffin-embedded (FFPE) whole-slide images (WSIs) using LUAD subtypes-related histological features and recent advances in computer vision. Our study was performed on a total of 747 hematoxylin and eosin (H&E) stained FFPE LUAD WSIs and the genetic mutation data of 232 patients who were treated at Dartmouth-Hitchcock Medical Center (DHMC). We developed our convolutional neural network-based models to analyze whole slides and predict five major genetic mutations, i.e., BRAF, EGFR, KRAS, STK11, and TP53. We additionally used 111 cases from the LUAD dataset of the CPTAC-3 study for external validation. Our model achieved an AUROC of 0.799 (95% CI: 0.686–0.904) and 0.686 (95% CI: 0.620–0.752) for predicting EGFR genetic mutations on the DHMC and CPTAC-3 test sets, respectively. Predicting TP53 genetic mutations also showed promising outcomes. Our results demonstrated that H&E stained FFPE LUAD whole slides could be utilized to predict oncogene mutations, such as EGFR, indicating that somatic mutations could present subtle morphological characteristics in histology slides, where deep learning-based feature extractors can learn such latent information.  相似文献   

4.
5.
Anti-epidermal growth factor receptor (EGFR) therapy has been tried in triple negative breast cancer (TNBC) patients without evaluation of molecular and clinical predictors in several randomized clinical studies. Only fewer than 20% of metastatic TNBCs showed response to anti-EGFR therapy. In order to increase the overall response rate, first step would be to classify TNBC into good or poor responders according to oncogenic mutation profiles. This study provides the molecular characteristics of TNBCs including EGFR gene copy number changes and mutation status of EGFR and KRAS gene in Korean TNBC patients. Mutation analysis for EGFR, KRAS, BRAF and TP53 from a total of 105 TNBC tissue samples was performed by direct sequencing, peptide nucleic acid-mediated PCR clamping method and real-time PCR. Copy number changes of EGFR gene were evaluated using multiplex ligation-dependent probe amplification. Out of all 105 TNBCs, 15.2% (16/105) showed EGFR copy number changes. Among them, increased or decreased EGFR copy number was detected in 13 (5 single copy gain, 2 amplification and 4 high-copy number amplification) and 3 cases (3 hemizygous deletion), respectively. The mutation frequencies of KRAS, EGFR and TP53 gene were 1.9% (G12V and G12D), 1.0% (exon 19 del) and 31.4%, respectively. There was no BRAF V600E mutation found. Future studies are needed to evaluate the clinical outcomes of TNBC patients who undergo anti-EGFR therapy according to the genetic status of EGFR.  相似文献   

6.
When compared with other epithelial ovarian cancers, the clinical characteristics of ovarian clear cell adenocarcinoma (CCC) include 1) a higher incidence among Japanese, 2) an association with endometriosis, 3) poor prognosis in advanced stages, and 4) a higher incidence of thrombosis as a complication. We used high resolution comparative genomic hybridization (CGH) to identify somatic copy number alterations (SCNAs) associated with each of these clinical characteristics of CCC. The Human Genome CGH 244A Oligo Microarray was used to examine 144 samples obtained from 120 Japanese, 15 Korean, and nine German patients with CCC. The entire 8q chromosome (minimum corrected p-value: q = 0.0001) and chromosome 20q13.2 including the ZNF217 locus (q = 0.0078) were amplified significantly more in Japanese than in Korean or German samples. This copy number amplification of the ZNF217 gene was confirmed by quantitative real-time polymerase chain reaction (Q-PCR). ZNF217 RNA levels were also higher in Japanese tumor samples than in non-Japanese samples (P = 0.027). Moreover, endometriosis was associated with amplification of EGFR gene (q = 0.047), which was again confirmed by Q-PCR and correlated with EGFR RNA expression. However, no SCNAs were significantly associated with prognosis or thrombosis. These results indicated that there may be an association between CCC and ZNF217 amplification among Japanese patients as well as between endometriosis and EGFR gene amplifications.  相似文献   

7.
In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. To characterize cancer at a molecular level, the use of formalin-fixed paraffin-embedded tissue is important. We tested the Ion AmpliSeq Cancer Hotspot Panel v2 and nCounter Copy Number Variation Assay in 89 formalin-fixed paraffin-embedded gastric cancer samples to determine whether they are applicable in archival clinical samples for personalized targeted therapies. We validated the results with Sanger sequencing, real-time quantitative PCR, fluorescence in situ hybridization and immunohistochemistry. Frequently detected somatic mutations included TP53 (28.17%), APC (10.1%), PIK3CA (5.6%), KRAS (4.5%), SMO (3.4%), STK11 (3.4%), CDKN2A (3.4%) and SMAD4 (3.4%). Amplifications of HER2, CCNE1, MYC, KRAS and EGFR genes were observed in 8 (8.9%), 4 (4.5%), 2 (2.2%), 1 (1.1%) and 1 (1.1%) cases, respectively. In the cases with amplification, fluorescence in situ hybridization for HER2 verified gene amplification and immunohistochemistry for HER2, EGFR and CCNE1 verified the overexpression of proteins in tumor cells. In conclusion, we successfully performed semiconductor-based sequencing and nCounter copy number variation analyses in formalin-fixed paraffin-embedded gastric cancer samples. High-throughput screening in archival clinical samples enables faster, more accurate and cost-effective detection of hotspot mutations or amplification in genes.  相似文献   

8.
The extent to which heritable genetic variants can affect tumor development has yet to be fully elucidated. Tumor selection of single nucleotide polymorphism (SNP) risk alleles, a phenomenon called preferential allelic imbalance (PAI), has been demonstrated in some cancer types. We developed a novel application of digital PCR termed Somatic Mutation Allelic Ratio Test using Droplet Digital PCR (SMART-ddPCR) for accurate assessment of tumor PAI, and have applied this method to test the hypothesis that heritable SNPs associated with childhood acute lymphoblastic leukemia (ALL) may demonstrate tumor PAI. These SNPs are located at CDKN2A (rs3731217) and IKZF1 (rs4132601), genes frequently lost in ALL, and at CEBPE (rs2239633), ARID5B (rs7089424), PIP4K2A (rs10764338), and GATA3 (rs3824662), genes located on chromosomes gained in high-hyperdiploid ALL. We established thresholds of AI using constitutional DNA from SNP heterozygotes, and subsequently measured allelic copy number in tumor DNA from 19–142 heterozygote samples per SNP locus. We did not find significant tumor PAI at these loci, though CDKN2A and IKZF1 SNPs showed a trend towards preferential selection of the risk allele (p = 0.17 and p = 0.23, respectively). Using a genomic copy number control ddPCR assay, we investigated somatic copy number alterations (SCNA) underlying AI at CDKN2A and IKZF1, revealing a complex range of alterations including homozygous and hemizygous deletions and copy-neutral loss of heterozygosity, with varying degrees of clonality. Copy number estimates from ddPCR showed high agreement with those from multiplex ligation-dependent probe amplification (MLPA) assays. We demonstrate that SMART-ddPCR is a highly accurate method for investigation of tumor PAI and for assessment of the somatic alterations underlying AI. Furthermore, analysis of publicly available data from The Cancer Genome Atlas identified 16 recurrent SCNA loci that contain heritable cancer risk SNPs associated with a matching tumor type, and which represent candidate PAI regions warranting further investigation.  相似文献   

9.
Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT). The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33) and showed that TWIST1 expression was linked to EGFR mutations (P<0.001), to low CDH1 expression (P<0.05) and low disease free survival (P = 0.044). To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.  相似文献   

10.
Pemetrexed and platinum (PP) combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM). However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions). We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found.  相似文献   

11.
12.
BACKGROUND: Liquid biopsy is emerging as an important approach for tumor genotyping in non-small cell lung cancer, ddPCR and SuperARMS are both methods with high sensitivity and specificity for detecting EGFR mutation in plasma. We aimed to compare ddPCR and SuperARMS to detect plasma EGFR status in a cohort of advanced NSCLC patients. METHOD: A total of 79 tumor tissues and paired plasma samples were collected. The EGFR mutation status in tissue was tested by ADx-ARMS, matched plasma was detected by ddPCR and SuperARMS, respectively. RESULTS: The EGFR mutation rates were identified as 64.6% (tissue, ARMS), 55.7% (plasma, ddPCR), and 49.4% (plasma, Super ARMS), respectively. The sensitivity of ddPCR was similar with Super-ARMS in plasma EGFR detection (80.4% vs 76.5%), as well as the specificity (89.3% vs 100%). And the McNemar’s test showed there was no significant difference (P = .125). The concordance rate between SuperARMS and ddPCR was 91.1%. A significant interaction was observed between cfDNA EGFR mutation status and EGFR-TKIs treatment tested by both methods. CONCLUSION: Super-ARMS and ddPCR share the similar accuracy for EGFR mutation detection in plasma biopsy; both methods predicted well the efficacy of EGFR-TKIs by detecting plasma EGFR status.  相似文献   

13.
OBJECTIVE: It is important to analyze and track Epidermal Growth Factor Receptor (EGFR) mutation status for predicting efficacy and monitoring resistance throughout EGFR-tyrosine kinase inhibitors (TKIs) treatment in non-small cell lung cancer (NSCLC) patients. The objective of this study was to determine the feasibility and predictive utility of EGFR mutation detection in peripheral blood. METHODS: Plasma, serum and tumor tissue samples from 164 NSCLC patients were assessed for EGFR mutations using Amplification Refractory Mutation System (ARMS). RESULTS: Compared with matched tumor tissue, the concordance rate of EGFR mutation status in plasma and serum was 73.6% and 66.3%, respectively. ARMS for EGFR mutation detection in blood showed low sensitivity (plasma, 48.2%; serum, 39.6%) but high specificity (plasma, 95.4%; serum, 95.5%). Treated with EGFR-TKIs, patients with EGFR mutations in blood had significantly higher objective response rate (ORR) and insignificantly longer progression-free survival (PFS) than those without mutations (ORR: plasma, 68.4% versus 38.9%, P = 0.037; serum, 75.0% versus 39.5%, P = 0.017; PFS: plasma, 7.9 months versus 6.1 months, P = 0.953; serum, 7.9 months versus 5.7 months, P = 0.889). In patients with mutant tumors, those without EGFR mutations in blood tended to have prolonged PFS than patients with mutations (19.7 months versus 11.0 months, P = 0.102). CONCLUSIONS: EGFR mutations detected in blood may be highly predictive of identical mutations in corresponding tumor, as well as showing correlations with tumor response and survival benefit from EGFR-TKIs. Therefore, blood for EGFR mutation detection may allow NSCLC patients with unavailable or insufficient tumor tissue the opportunity to benefit from personalized treatment. However, due to the high false negative rate in blood samples, analysis for EGFR mutations in tumor tissue remains the gold standard.  相似文献   

14.
15.
Somatic mutations in the EGFR proto-oncogene occur in ~15% of human lung adenocarcinomas and the importance of EGFR mutations for the initiation and maintenance of lung cancer is well established from mouse models and cancer therapy trials in human lung cancer patients. Recently, we identified DOK2 as a lung adenocarcinoma tumor suppressor gene. Here we show that genomic loss of DOK2 is associated with EGFR mutations in human lung adenocarcinoma, and we hypothesized that loss of DOK2 might therefore cooperate with EGFR mutations to promote lung tumorigenesis. We tested this hypothesis using genetically engineered mouse models and find that loss of Dok2 in the mouse accelerates lung tumorigenesis initiated by oncogenic EGFR, but not that initiated by mutated Kras. Moreover, we find that DOK2 participates in a negative feedback loop that opposes mutated EGFR; EGFR mutation leads to recruitment of DOK2 to EGFR and DOK2-mediated inhibition of downstream activation of RAS. These data identify DOK2 as a tumor suppressor in EGFR-mutant lung adenocarcinoma.  相似文献   

16.
In sporadic colorectal cancer (CRC), the BRAFV600E mutation is associated with deficient mismatch repair (MMR) status and inversely associated with to KRAS mutations. In contrast to deficient MMR (dMMR) CRC, data on the presence of KRAS oncogenic mutations in proficient MMR (pMMR) CRC and their relationship with tumor progression are scarce. We therefore examined the MMR status in combination with KRAS mutations in 913 Chinese patients and correlated the findings obtained with clinical and pathological features. The MMR status was determined based on detection of MLH1, MSH2, MSH6 and PMS2 expression. KRAS mutation and dMMR status were detected in 36.9% and 7.5% of cases, respectively. Four subtypes were determined by MMR and KRAS mutation status: KRAS (+)/pMMR (34.0%), KRAS (+)/dMMR (2.9%), KRAS (-)/pMMR (58.5%) and KRAS (-)/dMMR (4.6%). A higher percentage of pMMR tumors with KRAS mutation were most likely to be female (49.0%), proximal located (45.5%), a mucinous histology (38.4%), and to have increased lymph node metastasis (60.3%), compared with pMMR tumors without BRAFV600E and KRAS mutations (36.0%, 29.3%, 29.4% and 50.7%, respectively; all P < 0.01). To the contrary, compared with those with KRAS(-)/dMMR tumors, patients with KRAS(+)/dMMR tumors demonstrated no statistically significant differences in gender, tumor location, pT depth of invasion, lymph node metastasis, pTNM stage, and histologic grade. This study revealed that specific epidemiologic and clinicopathologic characteristics are associated with MMR status stratified by KRAS mutation. Knowledge of MMR and KRAS mutation status may enhance molecular pathologic staging of CRC patients and metastatic progression in CRC can be estimated based on the combination of these biomarkers.  相似文献   

17.
18.
Glioblastoma is a highly aggressive tumour of the central nervous system, characterised by poor prognosis irrespective of the applied treatment. The aim of our study was to analyse whether the molecular markers of glioblastoma (i.e. TP53 and IDH1 mutations, CDKN2A deletion, EGFR amplification, chromosome 7 polysomy and EGFRvIII expression) could be associated with distinct prognosis and/or response to the therapy. Moreover, we describe a method which allows for a reliable, as well as time- and cost-effective, screening for EGFR amplification and chromosome 7 polysomy with quantitative Real-Time PCR at DNA level. In the clinical data, only the patient’s age had prognostic significance (continuous: HR = 1.04; p<0.01). At the molecular level, EGFRvIII expression was associated with a better prognosis (HR = 0.37; p = 0.04). Intriguingly, EGFR amplification was associated with a worse outcome in younger patients (HR = 3.75; p<0.01) and in patients treated with radiotherapy (HR = 2.71; p = 0.03). We did not observe any difference between the patients with the amplification treated with radiotherapy and the patients without such a treatment. Next, EGFR amplification was related to a better prognosis in combination with the homozygous CDKN2A deletion (HR = 0.12; p = 0.01), but to a poorer prognosis in combination with chromosome 7 polysomy (HR = 14.88; p = 0.01). Importantly, the results emphasise the necessity to distinguish both mechanisms of the increased EGFR gene copy number (amplification and polysomy). To conclude, although the data presented here require validation in different groups of patients, they strongly advocate the consideration of the patient’s tumour molecular characteristics in the selection of the therapy.  相似文献   

19.

Introduction

Assessment of EGFR mutation in non-small cell lung cancer (NSCLC) patients is mandatory for optimization of pharmacologic treatment. In this respect, mutation analysis of circulating tumor cells (CTCs) may be desirable since they may provide real-time information on patient''s disease status.

Experimental Design

Blood samples were collected from 37 patients enrolled in the TRIGGER study, a prospective phase II multi-center trial of erlotinib treatment in advanced NSCLC patients with activating EGFR mutations in tumor tissue. 10 CTC preparations from breast cancer patients without EGFR mutations in their primary tumors and 12 blood samples from healthy subjects were analyzed as negative controls. CTC preparations, obtained by the Veridex CellSearch System, were subjected to ultra-deep next generation sequencing (NGS) on the Roche 454 GS junior platform.

Results

CTCs fulfilling all Veridex criteria were present in 41% of the patients examined, ranging in number between 1 and 29. In addition to validated CTCs, potential neoplastic elements were seen in 33 cases. These included cells not fulfilling all Veridex criteria (also known as “suspicious objects”) found in 5 (13%) of 37 cases, and isolated or clustered large naked nuclei with irregular shape observed in 33 (89%) cases. EGFR mutations were identified by NGS in CTC preparations of 31 (84%) patients, corresponding to those present in matching tumor tissue. Twenty-five (96%) of 26 deletions at exon 19 and 6 (55%) of 11 mutations at exon 21 were detectable (P = 0.005). In 4 (13%) cases, multiple EGFR mutations, suggesting CTC heterogeneity, were documented. No mutations were found in control samples.

Conclusions

We report for the first time that the CellSearch System coupled with NGS is a very sensitive and specific diagnostic tool for EGFR mutation analysis in CTC preparations with potential clinical impact.  相似文献   

20.

Background

Primary tumor recurrence commonly occurs after surgical resection of lung squamous cell carcinoma (SCC). Little is known about the genes driving SCC recurrence.

Methods

We used array comparative genomic hybridization (aCGH) to identify genes affected by copy number alterations that may be involved in SCC recurrence. Training and test sets of resected primary lung SCC were assembled. aCGH was used to determine genomic copy number in a training set of 62 primary lung SCCs (28 with recurrence and 34 with no evidence of recurrence) and the altered copy number of candidate genes was confirmed by quantitative PCR (qPCR). An independent test set of 72 primary lung SCCs (20 with recurrence and 52 with no evidence of recurrence) was used for biological validation. mRNA expression of candidate genes was studied using qRT-PCR. Candidate gene promoter methylation was evaluated using methylation microarrays and Sequenom EpiTYPER analysis.

Results

18q22.3 loss was identified by aCGH as being significantly associated with recurrence (p = 0.038). Seven genes within 18q22.3 had aCGH copy number loss associated with recurrence but only SOCS6 copy number was both technically replicated by qPCR and biologically validated in the test set. SOCS6 copy number loss correlated with reduced mRNA expression in the study samples and in the samples with copy number loss, there was a trend for increased methylation, albeit non-significant. Overall survival was significantly poorer in patients with SOCS6 loss compared to patients without SOCS6 loss in both the training (30 vs. 43 months, p = 0.023) and test set (27 vs. 43 months, p = 0.010).

Conclusion

Reduced copy number and mRNA expression of SOCS6 are associated with disease recurrence in primary lung SCC and may be useful prognostic biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号