首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic membrane fragments were prepared from Anacystis nidulans by French pressure cell disruption. Ascorbate was required to stabilize photophosphorylation activity in membranes kept at near 0°C. Divalent cations were required during mechanical disruption and during assays for Photosystem II activity, with Ca2+ serving best. The rate of photophosphorylation was severely inhibited by Ca2+ during assays. Results suggest that best rates are achieved when photosynthetic membranes contain Ca2+ exposed to the interior surface, facilitating Photosystem II activity, and Mg2+ exposed to the exterior surface during assays, facilitating photophosphorylation activity.  相似文献   

2.
The presence of Ca2+ causes a twentyfold or greater increase in the rate of oxygen evolution by cell-free preparations of Phormidium luridum. The requirement for Ca2+ is specific; other divalent cations are much less effective or are inhibitory. The rate of the Hill reaction is maximal at 30 mM CaCl2 in both detergent-free and Brij 35 preparations. The 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive component of oxygen-evolving activity in each preparation also shows the requirement for added Ca2+. This indicates that Ca2+ is acting close to the oxygen-evolving reaction center of Photosystem II. Defatted bovine serum albumin increases the rate of oxygen evolution in the detergent-free preparation, but does not compete with Ca2+, discounting fatty acid mediation of the effects of Ca2+. Neither excess Hill acceptor nor uncouplers of photophosphorylation diminish the stimulatory effects of Ca2+.  相似文献   

3.
Incubation of Synechocystis PCC 6714 in liquid medium devoid of Na+ results in a light-dependent loss in photosynthetic O2 evolving capacity within 1 h. Photosynthetic activity is fully restored and normal growth resumes after Na+ is supplied to culture medium of depleted cells. If external Na+ is provided as soon as inhibition becomes complete, normal photosynthesis is restored within 3 min. However, if cells are further illuminated for several h under Na+ stress, then full recovery takes much longer, and requires new protein synthesis. Electron transport assays using isolated membranes demonstrate that the immediate inhibition resulting from Na+ depletion involves the O2 evolving site, while the secondary effect requiring new protein synthesis occurs near the reaction center of Photosystem II. Experiments conducted at different pH values and in the absence of inorganic carbon demonstrate that within the short time duration of these experiments Na+ does not inhibit photosynthesis by restricting bicarbonate movement into the cells. These experiments extend previous results with other cyanobacteria which demonstrated that Ca2+ and Na+ stress cause reversible damage at a site near the reaction center of Photosystem II. The damage can be characterized as a primary ion effect at the oxygen evolving site and a secondary photoinhibition near the reaction center of Photosystem II.  相似文献   

4.
1. Chymotrypsin treatment of chloroplast membranes inactivates Photosystem II. The inactivation is higher when the activity is measured under low intensity actinic light, suggesting that primary photochemistry is preferentially inactivated. 2. Membrane stacking induced by Mg2+ protects Photosystem II against chymotrypsin inactivation. When the membranes are irreversible unstacked by brief treatment with trypsin, Mg2+ protection against chymotrypsin inactivation of Photosystem II is abolished. 3. The kinetics of inactivation by chymotrypsin of Photosystem II indicates that membrane stacking slows down, but does not prevent, the access of chymotrypsin to Photosystem II, which is mostly located within the partition zones. 4. It is concluded that a partition gap exists between stacked membranes of about 45 A, the size of the chymotrypsin molecule. 5. The kinetics of inhibition of the chloroplast flavoprotein, ferredoxin-NADP reductase, bt its specific antibody is not affected by membrane stacking. This indicates that this enzyme is located outside the partition zones.  相似文献   

5.
Washing of spinach chloroplasts with high concentrations of Tris3 induces pH-dependent changes in chloroplast reactions. At high pH (8.4) Tris washing causes the inhibition of Photosystem 2 activity which can be prevented by the maintenance of reducing conditions during washing. Washing at low pH (7.2) causes an enhancement of oxygen evolution and increased rate of ferricyanide photoreduction which is not influenced by the presence of reducing conditions. The increased rate of electron flow is accompanied by the inhibition of light mediated phosphorylating activity, acid-induced ATP synthesis, light-induced proton uptake and light triggered Mg2+ ATPase activity. Tris treatment at low pH also causes a sensitization of Photosystem 2 activity such that oxygen evolution is inhibited by low concentrations of tris at high pH. This inhibition of the stimulated electron flow is not accompanied by a reconstitution of the photophosphorylation activity. A detailed analysis of the effect of tris treatment on Photosystem II activity and membrane dependent energy conversion shows that the treatment of chloroplasts causes an inhibition of the energy conversion process which is independent of the effect on oxygen evolution. Determination of the presence of coupling factor (as determined by ATPase activity) and membrane osmotic properties reveal normal levels of enzyme activity and osmotic response in treated chloroplasts. The inhibition of the energy conversion process is accompanied by reduced capacity to maintain a proton gradient. Kinetic analysis of the proton uptake reaction reveals that Tris treatment renders the grana membranes more permeable to protons.  相似文献   

6.
Roy Powls  J. Wong  Norman I. Bishop 《BBA》1969,180(3):490-499
To investigate the possible alteration of various components of the photosynthetic electron transport system of certain mutants of Scenedesmus techniques were developed for their extraction and purification from whole cells of this alga. The components identified in the normal alga were cytochrome c 549, cytochrome b 562, a cytochrome c 551, flavoprotein-ferredoxin reductase, plastocyanin, cytochrome c 552, and ferredoxin. Lamellar-bound cytochrome c 552 and cytochromes b were also detected. Application of the extraction and purification techniques to two photosynthetic mutants revealed that Mutants 26 and 50 lacked cytochrome f in both the bound and soluble forms (Mutant 50) or in only the bound form (Mutant 26). Chloroplasts prepared from either of these mutants lacked Hill reaction activity with a variety of oxidants with water as the electron donor but photoreduced NADP+ with 2,6-dichlorophenolindophenol and ascorbate as the electron donor system. No photophosphorylation in vivo was detected with either mutant, but isolated chloroplasts performed a cyclic photophosphorylation with phenazine methosulphate as cofactor. Fluorescence analysis revealed that both mutants possess a measurable Photosystem II activity.

It was concluded that the loss of cytochrome f prevents the normal flow of electrons from Photosystem II to NADP and also to a variety of other Hill reaction oxidants. Furthermore, cytochrome f is not required for the reduction of NADP with electron donor systems other than water nor is it an essential component of the mechanism of cyclic photophosphorylation with phenazine methosulphate as cofactor.  相似文献   


7.
Dwarf beans ( Phaseolus vulgaris L. cv. Limburgse Vroege) were grown on a nutrient medium containing a toxic non-lethal ZnSO4 concentration. The electron transport and photophosphorylation activities of chloroplasts, isolated from these beans, and from control plants, grown under standard nutrient conditions, were compared. Electron transport was significantly inhibited by Zn2+ treatment. Photosystem 2 activity proved to be more sensitive than photosystem 1 activity.
Inhibition was dependent on electron flow rate. Activity was fully restored with semicarbazide. EDTA-washed thylakoid membranes were strongly manganese-deficient. The results suggest that photolysis of water was primarily inhibited, due to a zinc-induced deficiency in loosely bound manganese at the water-splitting site. Manganese is probably substituted by zinc, since the zinc content of thylakoids increased five-fold. Non-cyclic photophosphorylation capacity was also limited as a result of inhibition of electron transport. Phosphorylation efficiency (ATP/2e ratio) involving both energy conserving sites was hardly affected.  相似文献   

8.
《BBA》1986,849(3):325-336
We have carried out a series of experiments in which the lipid composition of the photosynthetic membrane has been altered by the homogeneous catalytic hydrogenation of the unsaturated fatty acid residues of membrane lipids. The modified membrane was investigated by electron microscopy, electron-spin resonance and fluorescence polarization methods. Alteration in the functional characteristics of the hydrogenated membrane was monitored by the measurement of photophosphorylation and electron-transport activities. The following results were found. (a) Saturation of 10% of the fatty acyl double bonds induced a definite decrease in the dimension of both thylakoids and loculi. Microdensitometry showed that these structural changes arose from a thickening of the single membranes with a simultaneous decrease in the spacing between membranes. These changes might be accounted for by the alignment of the hydrocarbon chains of saturated lipids and the increased hydrophobicity of the membranes. (b) The orientational pattern of chlorophyll-a molecules was not altered by saturating up to 50% of fatty acyl double bonds in membrane lipids, indicating that the energy-transfer processes amongst the chlorophyll molecules remained functional after hydrogenation. (c) Saturation of double bonds of lipids inhibited whole electron transport prior to the inhibition of Photosystem II and Photosystem I activity, which may suggest that the unsaturation level of fatty acids plays a crucial role by ensuring the lateral mobility of plastoquinone between Photosystem II and Photosystem I.  相似文献   

9.
The effects of phorbol esters and diacylglycerols on Ca2+ transport in isolated human platelet membranes were determined. Phorbol 12-myristate 13-acetate (PMA) stimulated Ca2+-ATPase activity in crude and purified internal platelet membranes approximately 2-fold with half-maximal stimulation occurring at 10 nM. Dilauroylglycerol also stimulated Ca2+-ATPase activity half-maximally at a concentration of 7.5 microM, but dioctanoylglycerol was without effect at up to 30 microM. PMA also inhibited Ca2+ uptake when added before or after commencement of ATP-dependent transport. PMA (25 nM) doubled the rate of Ca2+ efflux from passively loaded membranes in the absence of ATP. No protein kinase C activity was detected in crude or purified membranes by histone phosphorylation or endogenous protein phosphorylation assays. These results suggest that PMA and dilauroylglycerol stimulate Ca2+-ATPase activity and inhibit ATP-dependent Ca2+ transport by increasing the permeability of the membranes to Ca2+.  相似文献   

10.
Cytoplasmic and thylakoid membranes have been purified from the cyanobacteria Anacystis nidulans R2 and Phormidium laminosum by sucrose density gradient centrifugation. Probing of Western blots of proteins from these purified membrane fractions with antibodies directed against the 33 kDa polypeptide of Photosystem II from pea indicates that this protein is present in both the thylakoid and cytoplasmic membranes, rather than just the thylakoid membranes. This has been confirmed by immunogold labelling of cells. Oxygen evolution assays have been used to show that the 33 kDa polypeptide is not assembled into a functional Photosystem II complex in the cytoplasmic membranes. This may be due to the absence of other Photosystem II components.  相似文献   

11.
In illuminated intact spinach chloroplasts, warming to and beyond 40 °C increased the proton permeability of thylakoids before linear electron transport through Photosystem II was inhibited. Simultaneously, antimycin A-sensitive cyclic electron transport around Photosystem II was activated with oxygen or CO2, but not with nitrite as electron acceptors. Between 40 to 42 °C, activation of cyclic electron transport balanced the loss of protons so that a sizeable transthylakoid proton gradient was maintained. When the temperature of darkened spinach leaves was slowly increased to 40°C, reduction of the quinone acceptor of Photosystem II, QA, increased particularly when respiratory CO2 production and autoxidation of plastoquinones was inhibited by decreasing the oxygen content of the atmosphere from 21 to 1%. Simultaneously, Photosystem II activity was partially lost. The enhanced dark QA reduction disappeared after the leaf temperature was decreased to 20 °C. No membrane energization was detected by light-scattering measurements during heating the leaf in the dark. In illuminated spinach leaves, light scattering and nonphotochemical quenching of chlorophyll fluorescence increased during warming to about 40 °C while Photosystem II activity was lost, suggesting extra energization of thylakoid membranes that is unrelated to Photosystem II functioning. After P700 was oxidized by far-red light, its reduction in the dark was biphasic. It was accelerated by factors of up to 10 (fast component) or even 25 (slow component) after short heat exposure of the leaves. Similar acceleration was observed at 20 °C when anaerobiosis or KCN were used to inhibit respiratory oxidation of reductants. Methyl viologen, which accepts electrons from reducing side of Photosystem II, completely abolished heat-induced acceleration of P700+ reduction after far-red light. The data show that increasing the temperature of isolated chloroplasts or intact spinach leaves to about 40 °C not only inhibits linear electron flow through Photosystem II but also activates Photosystem I-driven cyclic electron transport pathways capable of contributing to the transthylakoid proton gradient. Heterogeneity of the kinetics of P700+ reduction after far-red oxidation is discussed in terms of Photosystem I-dependent cyclic electron transport in stroma lamellae and grana margins.  相似文献   

12.
Chloride ion transport and its inhibition in thylakoid membranes   总被引:5,自引:0,他引:5  
Cl- translocation across energized and nonenergized thylakoid membranes was found to be inhibited by piretanide, an inhibitor of active Cl- transport in fish intestinal epithelia. Piretanide has no effect on photophosphorylation catalyzed by phenazine methosulfate or on Ca2+-dependent ATPase activity of isolated chloroplast coupling factor (CF1). Light-dependent Cl- uptake, contrary to H+ uptake, is severalfold greater at pH 8.0 than at pH 6.7.  相似文献   

13.
The development of photosynthetic activity and synthesis of chloroplast membrane polypeptides was studied during greening of Euglena gracilis Z in alternate light-dark-light cycles. The results show: (a) The development of both Photosystem II and Photosystem I can be dissociated from chlorophyll synthesis. (b) Most of the polypeptides required for development of Photosystem I are already synthesized during the initial light period (10–12 h); the further rise in Photosystem I activity in the dark is not inhibited by cycloheximide nor by chloramphenicol. (c) The development of Photosystem II requires continuous de novo synthesis of polypeptides and is inhibited by chloramphenicol. The water-splitting activity already present at the end of the first light period decays in the presence of chloramphenicol while that of 1,5-diphenylcarbazide oxidation is only partially retained. The activity can be repaired in the absence of chlorophyll synthesis and is correlated with the de novo synthesis of polypeptides of 50 000–60 000 daltons. The synthesis of these polypeptides and associated repair of Photosystem II activity is not inhibited by cycloheximide. (d) The chloroplast membranes can be resolved into about 40 distinct polypeptides, among them several in the molecular weight range 50 000–60 000, 20 000–35 000 and 10 000–15 000, which are major membrane constitutents. (e) The synthesis of two major polypeptides (Mr = 20 000–30 000) required for the formation of chlorophyll-protein complex(es) containing chlorophyll a and traces of chlorophyll b (CPII?) is light-dependent and cycloheximide-inhibited. It is concluded that the synthesis and addition to the growing membrane of chlorophyll and polypeptides required for the formation of Photosystem II and Photosystem I complexes can be dissociated in time. The H2O-splitting enzyme(s) and possibly other components of Photosystem II complex are of chloroplastic origin and turn over in the dark while at least some of the chlorophyll binding polypeptides are of cytoplastic origin and their synthesis is light-controlled.  相似文献   

14.
1. Phosphorylation of chloroplast membranes by illumination in the presence of ATP results in a 15–20% increase in the rate of Photosystem I electron transfer at low light intensity. 2. Phosphorylated membranes when depleted of Mg2+ and resuspended in a low salt medium still show a 17% lower yield of Photosystem II fluorescence than do unphosphorylated membranes. A 31% difference is seen after restoration of the maximal yield by addition of Mg2+. 3. The concentration of Mg2+ required to induce a half-maximal increase in fluorescence is 0.9 mM for control and 1.8 mM for phosphorylated chloroplasts. Phosphorylation at 1 mM Mg2+ can therefore cause more than double the amount of decrease in fluorescence yield from Photosystem II compared to phosphorylation at 5 mM. 4. The above results are discussed in terms of the mechanism of the ATP-induced fluorescence changes and a suggestion is made that the apparent interaction between phosphorylation and Mg2+ concentration may be a physiologically important phenomenon.  相似文献   

15.
Cadmium (Cd2+) is a well-known highly toxic element. The molecular mechanisms of the Cd2+ toxicity are not well understood. In photosynthetic organisms, toxic Cd2+ concentrations are often in the low-microM range. It has been proposed that low-microM Cd2+ concentrations affect photosynthesis at the level of Photosystem II by inhibiting oxygen evolution. However, in vitro studies on isolated, functional Photosystem II showed that much higher Cd2+ concentrations (mM range) were needed for inhibition. Here we show that Cd2+ in the low-microM range inhibited photoactivation (i.e., assembly of the water splitting complex) in Chlamydomonas reinhardtii and in isolated Photosystem II. Photoactivation is the last step in the assembly of Photosystem II before it becomes functional. The exact Cd2+ concentration necessary for inhibition depended on the concentration of calcium. It is proposed that Cd2+ binds competitively to the essential Ca2+ site in Photosystem II during photoactivation. The low Cd2+ concentration needed to inhibit photoactivation suggests that this event is also involved in the Cd2+-induced inhibition of photosynthesis in vivo. This mechanism is likely to be important for Cd2+ toxicity towards photosynthetic organisms in general, at least in unicellular like C. reinhardtii where Cd2+ has easy access to the photosynthetic apparatus.  相似文献   

16.
The enzyme lactoperoxidase was used to specifically iodinate the surface-exposed proteins of chloroplast lamellae. This treatment had two effects on Photosystem II activity. The first, occurring at low levels of iodination, resulted in a partial loss of the ability to reduce 2,6-dichlorophenolindophenol (DCIP), even in the presence of an electron donor for Photosystem II. There was a parallel loss of Photosystem II mediated variable yield fluorescence which could not be restored by dithionite treatment under anaerobic conditions. The same pattern of inhibition was observed in either glutaraldehyde-fixed or unfixed membranes. Analysis of the lifetime of fluorescence indicated that iodination changes the rate of deactivation of the excited state chlorophyll. We have concluded that iodination results in the introduction of iodine into the Photosystem II reaction center pigment-protein complex and thereby introduces a new quenching. The data indicate that the reaction center II is surface exposed.At higher levels of iodination, an inhibition of the electron transport reactions on the oxidizing side of Photosystem II was observed. That portion of the total rate of photoreduction of DCIP which was inhibited by this action could be restored by addition of an electron donor to Photosystem II. Loss of activity of the oxidizing side enzymes also resulted in a light-induced bleaching of chlorophyll a680 and carotenoid pigments and a dampening of the sequence of O2 evolution observed during flash irradiation of treated chloroplasts. All effects on electron transport on the oxidizing side of Photosystem II could be eliminated by glutaraldehyde fixation of the chloroplast lamellae prior to lactoperoxidase treatment. It is concluded that the electron carriers on the oxidizing side of Photosystem II are not surface localized; the functioning of these components is impaired by structural disorganization of the membrane occurring at high levels of iodination.Our data are in agreement with previously published schemes which suggest that Photosystem II mediated electron transport traverses the membrane.  相似文献   

17.
Partition in an aqueous Dextran-polyethylene glycol two-phase system has been used for the separation of chloroplast membrane vesicles obtained by press treatment of a grana-enriched fraction after unstacking in a low salt buffer.

The fractions obtained were analysed with respect to chlorophyll, photochemical activities and ultrastructural characteristics. The results reveal that the material partitioning to the Dextran-rich bottom phase consisted of large membrane vesicles possessing mainly Photosystem II properties with very low contribution from Photosystem I. Measurements of the H2O to phenyl-p-benzoquinone and ascorbate-Cl2Ind to NADP+ electron transport rates indicate a ratio of around six between Photosystem II and I.

The total fractionation procedure could be completed within 2–3 h with high recovery of both the Photosystem II water-splitting activity and the Photosystem I reduction of NADP+.

These data demonstrate that press treatment of low-salt destabilized grana membranes yields a population of highly Photosystem-II enriched membrane vesicles which can be discriminated by the phase system. We suggest that such membrane vesicles originate from large regions in the native grana membrane which contain virtually only Photosystem II.  相似文献   


18.
Thylakoid membranes were treated with either pancreatic or snake venom phospholipase A2, and the residual phospholipid content of these membranes was determined and compared to the rates of Photosystem II and/or Photosystem I electron transports. The hydrolysis curves of both phosphatidylglycerol and phosphatidylcholine displayed a first, rapid phase which was almost temperature-insensitive, followed by a second, slower phase which depended strongly on the temperature. When pancreatic phospholipase A2 had access either to the outer face or to both faces of the thylakoid membrane, either only part of or all the phospholipids, respectively, could be hydrolysed. These results were interpreted as indicating an asymmetric distribution of phospholipids across the thylakoid membrane, phosphatidylglycerol and phosphatidylcholine being preferentially located in the outer and the inner layer, respectively. When acting on uncoupled thylakoid membranes, phospholipase A2 exerted an inhibitory effect on Photosystem II activity and a stimulatory effect on Photosystem I activity. The involvement of phosphatidylcholine and of phosphatidylglycerol in electron transport activities of Photosystem II and of Photosystem I are discussed with special reference to the role of the external and internal pools of these phospholipids.  相似文献   

19.
Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II.  相似文献   

20.
M Ueno  V Mizuhira 《Histochemistry》1984,80(3):213-217
Periodical changes in Ca2+-ATPase and Mg2+-ATPase activity were observed cytochemically in the crayfish gastrolith epithelium during the molting cycle in relation to the calcium transport mechanism. The ATPase activity was demonstrated by a new one-step lead citrate method. The reaction products were mainly restricted to the matrix of type II cell mitochondria. The Ca2+-ATPase activity was intensely observed in two calcium moving stages, the small gastrolith period which indicates the beginning of gastrolith formation, and the aftermolt , when the calcified gastrolith has been dissolved in the stomach and then reabsorbed from the stomach epithelium into the newly formed soft exoskeleton through the blood. Although the intensity of reaction products of Mg2+-ATPase varied in each stage, the enzymatic activity was observed throughout all molting stages. Reaction products were observed in all mitochondria, basement membranes, apical cytoplasmic membranes, and in some lysosomes. In conclusion, periodical changes in the two types of ATPase activity were seen in the mitochondria of gastrolith epithelium during the molting cycle, but Ca2+-ATPase activity seemed to be more prominently synchronized to the calcium movement in the gastrolith epithelium than Mg2+-ATPase activity. There results provide the strong evidence that Ca2+-ATPase may act strongly in the calcium transport system of crayfish molting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号