首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bioluminescent bacterial enzyme system NAD(P)H:FMN-oxidoreductase-luciferase has been used as a test system for ecological monitoring. One of the modes to quench bioluminescence is the interaction of xenobiotics with the enzymes, which inhibit their activity. The use of endogenous flavin fluorescence for investigation of the interactions of non-fluorescent compounds with the bacterial luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri has been proposed. Fluorescence spectroscopy methods have been used to study characteristics of endogenous flavin fluorescence (fluorophore lifetime, the rotational correlation time). The fluorescence anisotropy behaviour of FMN has been analysed and compared to that of the enzyme-bound flavin. The fluorescence characteristics of endogenous flavin of luciferase and NAD(P)H:FMN-oxidoreductase have been shown to be applicable in studying enzymes' interactions with non-fluorescent compounds.  相似文献   

2.
A number of approaches have been proposed and tested to transfer enzymatic reactions into the functional elements of microfluidic chips on the example of the bienzyme bioluminescent reaction involving NAD(P)H:FMN-oxidoreductase and luciferase. Measurement of the catalytic activity of these enzymes (under the influence of pollutants) is the basis of enzymatic bioassay of various liquids. It was found that all of the components of the reaction must be placed in the same cell of the chip to improve the reproducibility of the measurements. The use of starch gel as a carrier for immobilization and gelatin as a scaffold in the reactor of the chip enables the preservation of enzyme activity in the course of sealing the chip at room temperature. It is shown that the components of the reaction should be vigorously stirred in a microfluidic chip reactor to improve the efficiency of the analysis. As a result of the studies, a prototype of microfluidic chip based on the enzymatic bioluminescent reaction is proposed. It is characterized by a detection limit of copper sulfate of 3 μM that corresponds to the sensitivity of traditional lux-biosensors based on living cells. The analysis time is reduced to 1 min, and the analysis can be performed by individuals without special laboratory skills.  相似文献   

3.
Bacterial bioluminescence, catalyzed by FMN:NAD(P)H oxidoreductase and luciferase, has been used as an analytical tool for quantitating the substrates of NAD(P)H-dependent enzymes. The development of inexpensive and sensitive biosensors based on bacterial bioluminescence would benefit from a method to immobilize the oxidoreductase and luciferase with high specific activity. Toward this end, oxidoreductase and luciferase were fused with a segment of biotin carboxy carrier protein and produced in Escherichia coli. The in vivo biotinylated luciferase and oxidoreductase were immobilized on avidin-conjugated agarose beads with little loss of activity. Coimmobilized enzymes had eight times higher bioluminescence activity than the free enzymes at low enzyme concentration and high NADH concentration. In addition, the immobilized enzymes were more stable than the free enzymes. This immobilization method is also useful to control enzyme orientation, which could increase the efficiency of sequentially operating enzymes like the oxidoreductase-luciferase system.  相似文献   

4.
A new method for obtaining stable butyrylcholinesterase (BuChE) samples based on the enzyme immobilization in starch and gelatin gels followed by drying is proposed. Coimmobilization of BuChE with the thiol group indicator 5,5'-dithiobis(2-nitrobenzoic) acid did not reduce the activity of BuChE, which allowed us to simplify the procedure and reduce the time of analysis of organophosphorus pesticides. The resulting immobilized samples retained activity for at least 300 days. BuChE samples based on the starch gel showed a greater sensitivity in the determination of pesticides as compared to the samples based on the gelatin gel.  相似文献   

5.
The commercially available bacterial luciferase: oxidoreductase system obtained from Vibrio fischerii has been immobilized in a bovine serum albumin (BSA) gel. The gel was cut in the shape of a disc and held to the bottom of a reaction cell, gel upwards. The immobilized enzyme gels are stable, reusable and easily cleaned of spent reagents. NADH and NADPH have been assayed down to nanomolar concentrations, although with an error of ± 15%. The system has been coupled to an NADPH-producing commercial assay for creatine kinase (ATP: creatine N-phosphotransferase, EC 2.7.3.2) activity. The kinetic assay gives a linear reaction rate vs. creatine kinase activity plot in the clinically important range.  相似文献   

6.
Immobilized enzymes are widely used in the clinical laboratory in the assay of several analytes and enzymes. The use of immobilized enzymes makes these reagents recoverable and re-usable, and in most cases increases their stability and catalytic activity. In conjunction with bioluminescent enzymes (firefly and bacterial luciferases) and chemiluminescent catalyst (peroxidase) we set up high-sensitive flow methods based on the use of nylon tube coil or epoxy methacrylate column as solid support. All the NAD(P)/NAD(P)H-dependent dehydrogenases (bacterial luciferase), ATP-dependent enzymes (firefly luciferase) and oxidases producing H2O2 (peroxidase) can be immobilized and a large variety of analytes have been sensitively measured. As an alternative format we also reported a dry chemistry method in which all the enzymes, substrates and cofactors are ready to use, supported on dry cellulose disks. Methodological problems such as flow conditions, stability, pH, ionic strength and analytical performances are also reported.  相似文献   

7.
A compact automated analyser which could analyse constituents in biological fluids with a small sample volume and in a short time has been developed. The instrument was composed of a flow injection analysis system equipped with chemiluminometric detection and an immobilized enzyme column reactor used in combination. Chemiluminescence has high sensitivity, and its reaction proceeds very quickly. Furthermore, an immobilized enzyme column reactor can produce a sufficient amount of hydrogen peroxide from compounds in serum in a short time. When enzymes are used as reagents for the analysis of substances in blood or blood serum, the final signals emitted by different enzyme reactions are usually not only hydrogen peroxide but also ammonia, NAD(P)H and so on. However, the practical chemiluminescence method for ammonia and NAD(P)H has not been established. We have discovered a new practical method for ammonia and NAD(P)H using an enzyme column reactor consisting of both immobilized L -glutamate dehydrogenase and L -glutamate oxidase. The determinations of glucose and uric acid in serum by chemiluminometry after production of hydrogen peroxide by the respective oxidases are presented. A newly chemiluminometric determination of ammonia, NAD(P)H and its applications to other enzymatic analyses that give ammonia and NAD(P)H as a final signal are also described.  相似文献   

8.
A bioluminescent assay for glycogen phosphorylase in cultured cells   总被引:3,自引:0,他引:3  
A new method for the determination of glycogen phosphorylase (1,4 alpha-D-glucose:orthophosphate alpha-glucosyltransferase, EC 2.4.1.1) in cultured cells is described. The assay utilizes bacterial luciferase (EC 2.7) in a liquid scintillation spectrometer to measure NAD(P)H formed in a coupled enzyme reaction comprising glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and phosphoglucomutase (EC 2.7.5.1). This assay is highly sensitive, easily detecting as little as 10 microU phosphorylase, fast and simple to perform. With modifications this procedure can be extended to measure other glycogenolytic enzymes and intermediates.  相似文献   

9.
The proteins of the bioluminescent bacterium Beneckea harveyi have been labelled with [3H]leucine prior to the induction of bioluminescence, and with [14C]leucine during the development of the bioluminescent system. An aliphatic aldehyde dehydrogenase and a NAD(P)H:flavin oxidoreductase, two enzymes that may be directly involved in the metabolism of the substrates (aldehyde, FMNH2) for the luminescent reaction catalyzed by luciferase, were purified and the isotope ratios of their respective polypeptide chains determined after sodium dodecyl sufate gel electrophoresis. A comparison of these isotope ratios to (a) the isotope ratios of the induced polypeptide chains of luciferase, purified in the same experiment, and (b) the average isotope ratio for the proteins synthesized in concert with growth has provided direct evidence that the synthesis of aldehyde dehydrogenase but not NAD(P)H:flavin oxidoreductase is induced during the development of bioluminescence.  相似文献   

10.
Kow YW  Smyth DA  Gibbs M 《Plant physiology》1982,69(3):740-741
The conversion of fructose-1,6-bisphosphate to glycerate-3-phosphate (PGA) was studied in a reconstituted spinach (Spinacia oleracea L.) chloroplast preparation to determine whether a chloroplast-localized NAB(P)H-oxidizing system (Kow, Smyth, Gibbs 1982 Plant Physiol 69: 72-76 with substrates of ascorbate, NAD(P)H, and H2O2 could serve as a coupling enzyme in the recycling of NAD(P)H. The rate of PGA formation was monitored as an indicator of NAD(P) generation. With NAD as a cofactor, ascorbate enhanced PGA formation, and an additional increase resulted upon addition of glucose-glucose oxidase, a H2O2-generating enzyme. This increase in PGA formation due to H2O2 was eliminated by the addition of catalase. With NADP and ferredoxin as cofactors, the recycling of NADP apparently was catalyzed both by ferredoxin-NADP reductase coupled to O2 and by the NAD(P)H-oxidizing system.  相似文献   

11.
We describe a method for the detection of isoforms of several glycolytic enzymes by activity staining after native PAGE. The staining is based on coupled enzyme assays carried out on the gel after electrophoresis and is linked to the disappearance of NADH, which is visualized by fluorescence. This method offers reliable and sensitive detection for phosphoenolpyruvate carboxylase, PPi-dependent phosphofructokinase, and pyruvate kinase from plant tissues. It can be applied to the detection of all enzymes which are normally detected spectrophotometrically using coupled enzyme assays consuming NAD(P)H.  相似文献   

12.
NAD(P)H dehydrogenase was purified approximately 480-fold from Saccharomyces cerevisiae with 6.5% activity yield. The enzyme was homogeneous on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 40,000–44,000 by gel filtration on Sephadex G-150 column chromatography and SDS-polyacrylamide gel electrophoresis. The Km values for NADPH and NADH were 7.3 μM and 0.1 mM, respectively. The activity of the enzyme increased approximately 4-fold with Cu2+. FAD, FMN and cytochrome c were not effective as electron acceptors, although Fe(CN)63− was slightly effective. NADH generated by the reaction of lactaldehyde dehydrogenase in the glycolytic methylglyoxal pathway will be reoxidized by NAD(P)H dehydrogenase. NAD(P)H dehydrogenase thus may contribute to the reduction/oxidation system in the glycolytic methylglyoxal pathway to maintain the flux of methylglyoxal to lactic acid via lactaldehyde.  相似文献   

13.
A NAD(P)H:flavin oxidoreductase, which produces FMNH2, one of the substrates for the luciferase reaction in bioluminescent bacteria, has been purified with the aid of affinity chromatography on epsilon-aminohexanoyl-FMN-Sepharose. The purified enzyme, isolated from Beneckea harveyi, had a specific activity of 89 mumol of NADH oxidized/min/mg of protein at 23 degrees in the presence of saturating FMN and NADH and appeared homogeneous by several criteria on polyacrylamide gel electrophoresis. A molecular weight of 24,000 was estimated both by gel filtration and and sodium dodecyl sulfate gel electrophoresis indicating that the enzyme is composed of a single polypeptide chain. Kinetic studies showed that the higher specificity of the enzyme for NADH than NADPH and for riboflavin and FMN than FAD was primarily due to variations in the Michaelis constants for the different substrates. Initial velocity studies with all pairs of substrates gave intersecting patterns supporting a sequential mechanism for the NAD(P)H:flavin oxidoreductase.  相似文献   

14.
The soluble enzymatic luminescent system of the dinoflagellate Pyrocystis lunula (luciferase-luciferin) is coupled with an enzymatic NAD(P)H-dependent reaction. The enzyme is a soluble reductase (Mr 47,000) which catalyzes, in the presence of NAD(P)H, the reduction of a molecule called P630. Reduced P630 has the same spectral characteristics as the purified luciferin. The luciferase can oxidize this reduced molecule with a light emission at 480 nm. These observations suggest that reduced P630 is a luciferin molecule. The oxidized form seems, in these conditions, to be the precursor of luciferin.  相似文献   

15.
NAD(P)H dehydrogenase (EC 1.6.99.2) purified from rat liver cytosol revealed three discrete bands, of mol.wts. about 27000, 18000 and 9000, when subjected to polyacrylamidegel electrophoresis in the presence of sodium dodecyl sulphate. Elution of the bands from the gel and individual re-electrophoresis on separate gels showed that the 27000-mol.wt. band yielded three bands similar to those obtained with the intact enzyme, whereas the 18000-mol.wt. band retained its characteristic mobility. Amino acid analysis of native enzyme and protein extracted from each of the three bands from sodium dodecyl sulphate/polyacrylamide gels suggests that the native enzyme is composed of two subunits and that each subunit consists of two dissimilar non-covalently bound polypeptides, so that altogether the enzyme is composed of four polypeptides, two of mol.wt. 18000 and two of mol.wt. 9000. NAD(P)H dehydrogenase was active over a wide pH range with no sharp optimum. The same K(m) value for NADH but different values for V(max.) were obtained for the enzyme purified from Sprague-Dawley and Wistar rats. In immunodiffusion, however, the enzymes from the two rat strains showed a reaction of complete identity. NAD(P)H dehydrogenase was effectively inhibited by thiol-blocking reagents, indicating that the activity is dependent on free thiol group(s). By amino acid analysis six cysteine residues were found per mol of enzyme. Guanidino-group- and amino-group-selective reagents had only moderate inactivating effects on the enzyme activity.  相似文献   

16.
Chemical modification of papain for use in alkaline medium   总被引:1,自引:0,他引:1  
Chemical modification is a useful method to recognize and modify functional determinants of enzymes. Papain, an endolytic cysteine protease (EC3.4.22.2) from Carica papaya latex has been chemically modified using different dicarboxylic anhydrides of citraconic, phthalic, maleic and succinic acids. These anhydrides reacted with five to six amino groups of the lysine residues in the enzyme, thereby changing the net charge of the enzyme from positive to negative. The resultant enzyme had its optimum pH shifted from 7 to 9 and change in temperature optima from 60 to 80 °C. The modified papain also had a higher thermostability. Stability of the modified papain was further increased by immobilization of the enzyme either by adsorption onto inert matrix or by entrapment in polysaccharide polymeric gels. Entrapment in starch gel showed better retention of enzyme activity. Incorporation of modified and immobilized enzymes to branded domestic detergent powders was found to have very good activity retention. The papain entrapped in starch gel showed better stability and activity retention than in other carbohydrate polymers when added to domestic detergent powders.  相似文献   

17.
Jeffers CE  Tu SC 《Biochemistry》2001,40(6):1749-1754
It is believed that the reduced FMN substrate required by luciferase from luminous bacteria is provided in vivo by NAD(P)H-FMN oxidoreductases (flavin reductases). Our earlier kinetic study indicates a direct flavin cofactor transfer from Vibrio harveyi NADPH-preferring flavin reductase P (FRP(H)) to the luciferase (L(H)) from the same bacterium in the in vitro coupled luminescence reaction. Kinetic studies were carried out in this work to characterize coupled luminescence reactions using FRP(H) and the Vibrio fischeri NAD(P)H-utilizing flavin reductase G (FRG(F)) in combination with L(H) or luciferase from V. fischeri (L(F)). Comparisons of K(m) values of reductases for flavin and pyridine nucleotide substrates in single-enzyme and luciferase-coupled assays indicate a direct transfer of reduced flavin, in contrast to free diffusion, from reductase to luciferase by all enzyme couples tested. Kinetic mechanisms were determined for the FRG(F)-L(F) and FRP(H)-L(F) coupled reactions. For these two and the FRG(F)-L(H) coupled reactions, patterns of FMN inhibition and effects of replacement of the FMN cofactor of FRP(H) and FRG(F) by 2-thioFMN were also characterized. Similar to the FRP(H)-L(H) couple, direct cofactor transfer was detected for FRG(F)-L(F) and FRP(H)-L(F). In contrast, despite the structural similarities between FRG(F) and FRP(H) and between L(F) and L(H), direct flavin product transfer was observed for the FRG(F)-L(H) couple. The mechanism of reduced flavin transfer appears to be delicately controlled by both flavin reductase and luciferase in the couple rather than unilaterally by either enzyme species.  相似文献   

18.
A review of the mechanisms of the exogenous redox compounds influence on the bacterial coupled enzyme system: NAD(P)H:FMN-oxidoreductase-luciferase has been done. A series of quinones has been used as model organic oxidants. The three mechanisms of the quinones' effects on bioluminescence were suggested: (1) inhibition of the NADH-dependent redox reactions; (2) interactions between the compounds and the enzymes of the coupled enzyme system; and (3) intermolecular energy migration. The correlation between the kinetic parameters of bioluminescence and the standard redox potential of the quinones proved that the inhibition of redox reactions was the key mechanism by which the quinones decrease the light emission intensity. The changes in the fluorescence anisotropy decay of the endogenous flavin of the enzyme preparations showed the direct interaction between quinones and enzymes. It has been demonstrated that the intermolecular energy migration mechanism played a minor role in the effect of quinones on the bioluminescence. A comparative analysis of the effect of quinones, phenols and inorganic redox compounds on bioluminescent coupled enzyme systems has been carried out.  相似文献   

19.
Lactate dehydrogenase (EC 1.1.1.27) has been immobilized in polyacrylamide gels over a platinum grid matrix. The immobilized enzyme is used to oxidize L-lactate in the presence of nicotinamide adenine dinucleotide (NAD+) and ferricyanide. The NADH produced is then chemically oxidized back to NAD+ by ferricyanide. The coupled reduction of ferricyanide ions to ferrocyanide ions results in a measurable electrochemical potential. This measurable zero-current potential is found to be Nernstian in nature and directly proportional to the logarithm values of L-lactate concentration over the range of 2 X 10(-5) to 5 X 10(-2)M. The results indicate that immobilized lactate dehydrogenase can be incorporated into a system to detect L-lactate acid in aqueous solutions.  相似文献   

20.
S.H. FLINT, N.J. HARTLEY, S.M. AVERY AND J.A. HUDSON. 1996. Forty-seven Listeria monocytogenes isolates were analysed using multilocus enzyme electrophoresis in two laboratories. Both assayed for the same six enzymes, but one used a starch gel method and the other polyacrylamide gels. The starch gel method distinguished six electrophoretic types whereas the polyacrylamide gel method produced 17 different electrophoretic types. The polyacrylamide gel method was more discriminatory than the starch gel method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号