首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cannibalism among starved groups of juvenile (19–48 days old) vundu catfish Heterobranchus longifilis was 66·5% nocturnal, and its impact under modified day length was proportional to the duration of the dark phase. Shallow depth and high population density decreased the intensity of cannibalism, whereas low density and deeper environments had an opposite effect. The presence of refuges had no significant effect on cannibalism. The maintenance ( R maint) and maximum ( R max) daily food rations (% day−1) of cannibals feeding on live prey were modelled as R maint=3·899 W C0·327 ( r 2=0·684; d.f.=31), and R max=49.545 W C0·321 ( r 2=0·999; d.f.=5), where W C was the body weight of the cannibal (g). The latter model indicated that the impact of a cannibal on a population decreased by a 20% margin each time the cannibal doubled its body weight, and suggested that cannibalism among vundu would become insignificant for cannibals heavier than 30 g. The significance of these findings is discussed within the contexts of vundu aquaculture and of general, conceptual models of the dynamics of cannibalism among fishes.  相似文献   

2.
Cannibalism among predators is a key intraspecific interaction affecting their density and foraging behavior, eventually modifying the strength of predation on heterospecific prey. Interestingly, previous studies showed that cannibalism among predators can increase or reduce predation on heterospecific prey; however, we know less about the factors that lead to these outcomes. Using a simple pond community consisting of Hynobius retardatus salamander larvae and their associated prey, I report empirical evidence that cannibalism among predators can increase predation on large heterospecific prey but reduce that on small heterospecific prey. In a field‐enclosure experiment in which I manipulated the occurrence of salamander cannibalism, I found that salamander cannibalism increased predation on frog tadpoles but reduced that on aquatic insects simultaneously. The contrasting effects are most likely to be explained by prey body size. In the study system, frog tadpoles were too large for non‐cannibal salamanders to consume, while aquatic insects were within the non‐cannibals’ consumable prey size range. However, when cannibalism occurred, a few individuals that succeeded in cannibalizing reached large enough size to consume frog tadpoles. Consequently, although cannibalism among salamanders reduced their density, salamander cannibalism increased predation on large prey frog tadpoles. Meanwhile, salamander cannibalism reduced predation on small prey aquatic insects probably because of a density reduction of non‐cannibals primarily consuming aquatic insects. Body size is often correlated with various ecological traits, for instance, diet width, consumption, and excretion rates, and is thus considered a good indicator of species’ effects on ecosystem function. All this considered, cannibalism among predators could eventually affect ecosystem function by shifting the size composition of the prey community.  相似文献   

3.
Rudolf VH  Armstrong J 《Oecologia》2008,157(4):675-686
Many organisms undergo ontogenetic niche shifts due to considerable changes in size during their development. These ontogenetic shifts can alter the trophic position of individuals, the type and strength of ecological interactions across species, and allow for cannibalism within species. In this study we ask if and how the interaction of a size refuge and cannibalism in the prey alters the dynamics of intraguild predation (IGP) systems. By manipulating the composition of large cannibalistic (Aeshna umbrosa) and predatory (Anax junius) dragonfly larvae in mesocosms we show that the interaction of cannibals and predators was non-linear and increased the survival of prey. The structure of the final resource community shared by prey and predator differed between small and large dragonfly treatments but not within size classes across species. In general, the small prey stage showed similar shifts in microhabitat use and refuge use when exposed to either conspecific cannibals or predators, while large cannibals showed no clear anti-predator response. However, further behavioral experiments revealed that specific behavioral components, such as distances between individuals or number of movements, differed when individuals were exposed to either cannibals or predators. This indicates that individuals discriminated between conspecific or heterospecific predators. Furthermore, in similar experiments large cannibals and predators showed different behaviors when exposed to conspecifics rather than to each other. These changes in behavior are consistent with the observed increase in prey survival. In general, the results indicate that cannibalism and ontogenetic niche shifts can result in behavior-mediated indirect interactions that reduce the impact of the predator on the mortality of its prey and alter the interactions of IGP systems. However, they also indicate that size is not the sole determinant and that we also need to account for the species identity when predicting the dynamics of communities.  相似文献   

4.
 Because cannibals are potentially both predator and prey, the presence of conspecifics and alternative prey may act together to influence the rate at which cannibals prey upon each other or emigrate from a habitat patch. Wolf spiders (Lycosidae) are cannibalistic-generalist predators that hunt for prey with a sit-and-wait strategy characterized by changes in foraging site. Little information is available on how both prey abundance and the presence of conspecifics influence patch quality for these cursorial, non-web-building spiders. To address this question, laboratory experiments were conducted with spiderlings and older juveniles of the lycosid genus Schizocosa. The presence of insect prey consistently reduced rates of spider emigration when spiders were housed either alone or in groups. Solitary juvenile Schizocosa that had been recently collected from the field exhibited a median giving-up time (GUT) of 10 h in the absence of prey (Collembola); providing Collembola increased the median GUT to 64 h. For solitary spiders, the absence of prey increased by about fourfold the rate of emigration during the first 24 h. In contrast, for spiders in patches with a high density of conspecifics, the absence of prey increased the 24-h emigration rate by only 1.6-fold. For successful cannibals in the no-prey patches, the presence of conspecifics improved patch quality by providing a source of food. Mortality by cannibalism was affected by both prey availability and openness of the patch to net emigration. In patches with no net emigration, the presence of prey reduced rates of cannibalism from 79% to 57%. Spiders in patches open to emigration but not immigration experienced a rate of cannibalism (16%) that was independent of prey availability. The results of these experiments indicate that for a cannibalistic forager such as the wolf spider Schizocosa, (1) the presence of conspecifics can improve average patch quality when prey are absent, and (2) cannibalism has the potential to be a significant mortality factor under natural field conditions because cannibalism persisted in prey patches that were open to emigration. Received: 12 April 1996 / Accepted: 14 August 1996  相似文献   

5.
Feeding rate experiments were conducted for pink salmon Oncorhynchus gorbuscha fry [mean fork length ( L F) 39 mm], juveniles (103–104 mm L F) and juvenile chum salmon Oncorhynchus keta (106–107 mm L F). Fishes were presented with small copepod ( Tisbi sp.) or larger mysid shrimp ( Mysidopsis bahia ) prey at varying densities ranging from 1 to 235 prey l−1 in feeding rate experiments conducted at water temperatures ranging from 10·5 to 12·0° C under high light levels and low turbidity conditions. Juvenile pink and chum salmon demonstrated a type II functional response to mysid and copepod prey. Mysid prey was readily selected by both species whereas the smaller bodied copepod prey was not. When offered copepods, pink salmon fry fed at a higher maximum consumption rate (2·5 copepods min−1) than larger juvenile pink salmon (0·4 copepods min−1), whereas larger juvenile chum salmon exhibited the highest feeding rate (3·8 copepods min−1). When feeding on mysids, the maximum feeding rate for larger juvenile pink (12·3 mysids min−1) and chum (11·5 mysids min−1) salmon were similar in magnitude, and higher than feeding rates on copepods. Functional response models parameterized for specific sizes of juvenile salmon and zooplankton prey provide an important tool for linking feeding rates to ambient foraging conditions in marine environments, and can enable mechanistic predictions for how feeding and growth should respond to spatial-temporal variability in biological and physical conditions during early marine life stages.  相似文献   

6.
Pike fry were kept in 0.054-m3 tanks at densities of 50, 100 and 150 (277, 555, 833 fry m−2) for seven weeks during which the development of social and feeding behaviour was observed. Zooplankton, macro-invertebrates and perch fry were provided sequentially as food; the pike fry were allowed to feed ad libitum.
Zooplanktivorous fry stopped growing at 22 mm whilst, in the presence of abundant suitable alternative prey, 1–4% turned cannibalistic at 5 weeks of age; cannibals subsequently grew rapidly (mean 1.88 mm day−1). Cannibalism ensued in all tanks when the ratio of predator size: prey size was c .2:1.
Fry tended to space-out evenly in the tanks with no overt aggression or territoriality. Behaviour was typified by remaining still for long periods, particularly subsequent to the onset of cannibalism. Cannibals were attracted by fry movements which often initiated attacks.
Daily per capita mortality rates showed no crowding effects before cannibalism but significant density-dependent mortality due to cannibals. Consumption rates of cannibals varied between 0.63 and 6.0 fry per cannibal per day. Cannibals accounted for 54–96% of daily mortality in the experimental tanks. These results are discussed in relation to proposed mechanisms of pike population density regulation.  相似文献   

7.
Cannibalism in walleye pollock off the eastern coast of the Hokkaido Island, Japan was important only during spring (April to June), and its importance increased from 0% in dry mass for <200 mm L S fish to 48·9% for >400 mm L S fish. Most of the prey was represented by age 1 year fish, showing a unimodal body size distribution with a mode at 121–130 mm. Although cannibal body size was larger in deeper (>150 m) water, there was no difference in prey size by depth, suggesting impingement of the predators inhabiting deeper water into the shallow areas to cannibalize 1 year fish. The minimum ratio cannibal: prey size was 1·74. There was a positive but non-significant correlation between the contribution of cannibalism to a potential predator's (>300 mm) diet and an estimate of the previous year's recruitment. This was due to an extremely high contribution of cannibalism during 1992, when a distinctly larger size of predators seemed to bias the contribution. When the 1992 data were removed from the analysis, a significant correlation was obtained ( r 2=0·77, P <0·01), showing that Pollock cannibalism is rather density dependent. Based on the results, it is hypothesized that the'overflow' of 1 year fish from the shelf waters due to their high abundance and the weak stratification in the spring water column results in increased co-occurrence with adult fish and consequent cannibalism.  相似文献   

8.
Female juvenile vundu Heterobranchus longifilis outweighed males by > 60% ( P < 0·0001) margins when aged 142 or 177 days. Not only did females grow faster ( P =0·0494) than males during the experiment, but they also outweighed them by a 38·5% margin at the start of the experiment (86 days: P =0·0109). Sexual growth dimorphism (SGD) was estimated as having arisen at 15 ± 10 days. Vundu aquaculture could be improved substantially by monosex female rearing. Because the modelled emergence of SGD corresponded precisely with the start of type II cannibalism, it was suggested that cannibalism among juvenile vundu be exerted essentially by females, and might have different impacts on faster-growing females and slower-growing males.  相似文献   

9.
The growth, nucleic acid and protein contents of walleye pollock Theragra chalcogramma larvae reared at prey densities of 10, 30, 50, and 500 prey 1-1 were measured for the first 9 days after the feeding initiation at 6° C. Incremental growth rates of larvae (mm day-1) were low and variable for the first 7 days after feeding initiation. Growth rates and rates of RNA, DNA, and protein accumulation by larvae reared at 500 prey 1-1 were positive while those of larvae reared at the lower prey levels did not differ significantly from zero. The RNA/DNA ratio was variable and exhibited no significant trend among food treatments. Estimates of instantaneous protein growth rates ranged from - 6·7 to 13·2% day-1 at food densities of 10 and 500 prey 1-1, respectively, and were moderately correlated with larval RNA/DNA ratios ( r = 0·628). The results suggest that in situ protein growth rates of first-feeding pollock larvae may be influenced by prey fields within the range of ambient food densities reported for sub-Arctic ecosystems.  相似文献   

10.
We study the cumulative effect of successive predator attacks on the disturbance of a prey aggregation using a modelling approach. Our model intends to represent fish schools attacked by both aerial and underwater predators. This individual-based model uses long-distance attraction and short-distance repulsion between prey, which leads to prey aggregation and swarming in the absence of predators. When intermediate-distance alignment is added to the model, the prey aggregation displays a cohesive displacement, i.e., schooling, instead of swarming. Including predators, i.e. with repulsion behaviour for prey to predators in the model, leads to flash expansion of the prey aggregation after a predator attack. When several predators attack successively, the prey aggregation dynamics is a succession of expanding-grouping-swarming/schooling phases. We quantify this dynamics by recording the changes in the simulated prey aggregation radius over time. This radius is computed as the longest distance of individual prey to the aggregation centroid, and it is assumed to increase along with prey disturbance. The prey aggregation radius generally increases during flash expansion, then decreases during grouping until reaching a constant lowest level during swarming/schooling. This general dynamics is modulated by several parameters: the frequency, direction (vertical vs. horizontal) and target (centroid of the prey aggregation vs. random prey) of predator attacks; the distance at which prey detect predators; the number of prey and predators. Our results suggest that both aerial and underwater predators are more efficient at disturbing fish schools by increasing their attack frequency at such level that the fish cannot return to swarming/schooling. We find that a mix between aerial and underwater predators is more efficient at disturbing a fish school than a single type of attack, suggesting that aerial and underwater foragers may gain mutual benefits in forming foraging groups.  相似文献   

11.
Diet and foraging behaviour of three species of burrowing huntsman spiders, Leucorchestris arenicola, L. steyni and Carparachne aureoflava , from the Namib dunes were investigated over a three-year period. These nocturnal spiders are polyphagous predators that prey on more than 97 species of insects, arachnids and reptiles. Most prey were nocturnal or crepuscular tenebrionid beetles, moths and weevils. Diet varied regionally owing to faunal differences, but was relatively constant over seasons. Although spiders occasionally captured prey greater than themselves, average prey length was about two-thirds their own length. Prey size was not strongly related to spider size. Larger spiders were both cannibals and intraguild predators. Foraging pattern of L. arenicola was variable with several nights of activity followed by one or several nights of rest. Spiders foraged within 3 m of the burrow, but occasionally pursued prey or neighbouring conspecifics further. Large prey (> 3 mm) were captured approximately every five weeks in summer and every seven weeks in winter, producing an average annual consumption of ≅ 10 prey/spider. Namib huntsmen are sit-and-wait predators within narrow territories waiting for the fortuitous arrival of prey and are thus unlikely to limit prey populations. They compensate for food shortages by cannibalism, thus restricting their own population.  相似文献   

12.
Prey capture rate (number of prey s−1) and the mode of feeding of Arctic charr Salvelinus alpinus were studied by performing foraging experiments with two sizes (1·1 and 1·8 mm) of Daphnia longispina prey. Arctic charr were particulate feeders at all densities tested. Adjusted for the effect of prey density, the capture rate showed a hump-shaped relationship with Arctic charr size for both sizes of D. longispina . Estimated attack rates ( a ) also tended to show a hump-shaped relationship with fish size. The estimated size-scaling exponent of the attack rate function, however, was relatively small, implying small changes in attack rate over fish sizes. Simultaneous estimations of a and handling time were used in combination with published data on fish metabolism and dry mass rations of prey to estimate maintenance resource density of prey as a function of Arctic charr mass. Maintenance resource densities increased monotonically with Arctic charr size, and rapidly as optimum fish size relative to attack rate on prey was passed.  相似文献   

13.
This study assessed the cannibalistic behaviour of juvenile barramundi Lates calcarifer and examined the relationship between prey size selection and energy gain of cannibals. Prey handling time and capture success by cannibals were used to estimate the ratio of energy gain to energy cost in prey selection. Cannibals selected smaller prey despite its capability of ingesting larger prey individuals. In behavioural analysis, prey handling time significantly increased with prey size, but it was not significantly affected by cannibal size. Conversely, capture success significantly decreased with the increase of both prey and cannibal sizes. The profitability indices showed that the smaller prey provides the most energy return for cannibals of all size classes. These results indicate that L. calcarifer cannibals select smaller prey for more profitable return. The behavioural analysis, however, indicates that L. calcarifer cannibals attack prey of all size at a similar rate but ingest smaller prey more often, suggesting that prey size selection is passively orientated rather than at the predator's choice. The increase of prey escape ability and morphological constraint contribute to the reduction of intracohort cannibalism as fish grow larger. This study contributes to the understanding of intracohort cannibalism and development of strategies to reduce fish cannibalistic mortalities.  相似文献   

14.
No effect of prey size on gastric evacuation rate was found in whiting Merlangius merlangus .Prey energy density explained most of the data variation among fish prey, and evacuation time increased by a factor 1·6–1·7 with prey energy density increasing from 3·4 to 5·6 kJ g−1. The power model expanded to include predator size, temperature, and prey energy density could describe gastric evacuation in whiting fed fish prey. Krill Meganyctiphanes norvegica was evacuated at a rate similar to fish prey of equal energy density, while the evacuation of brown shrimp Crangon crangon took almost twice as long.  相似文献   

15.
Protozoan predation of bacterial cells in soil aggregates   总被引:2,自引:0,他引:2  
Abstract The development and survival of Aerobacter aerogenes IAM11022 in the inner and outer zones of soil aggregates (1–2 mm) was investigated in relation to a protozoan ( Colpoda sp.). With different dilutions of the bacterial cell suspension, a constant partition ratio of these cells was observed between outer and inner zones of the aggregates. Protozoa inoculated in the same manner were generally recovered only from the outer zone of the aggregates.
In the presence of protozoa, prey cell numbers of the outer zone were reduced from more than 108 to approx. 104 cells · g soil−1 in 12 days. In contrast, 108 cells · g soil−1 remained in the inner zone of the aggregates, even after 12 days.
The increase in predator cell number was proportional to initial prey densities in the outer zone of the aggregates. At a constant initial prey density (1.8 × 107 cells · g soil−1), Colpoda sp. multiplied in proportion to the initial number of predators. When the initial density of the predator was low more prey cells survived in the outer zone.
Prey persistence was associated with 3 different types of protection: (1) small pore necks of the inner zone space of the aggregates; (2) the division of the outer zone space into compartments; and (3) the distribution of protozoan cells among soil aggregates. The latter two were closely related to the moisture condition of the soil.  相似文献   

16.
The attack, escape and predation rates for larvae of aphidophagous ladybird Propylea dissecta (Mulsant) and Coccinella transversalis Fabricius were quantified as a potential mechanism leading to the differences in the incidence of cannibalism and intraguild predation. These rates were compared at four larval instars within and between the species. The attack rates of larvae of C. transversalis were significantly higher than those of P. dissecta towards conspecific and heterospecific victims. For both species, third instars exhibited maximum tendency to attack. Escape rates in C. transversalis were higher than P. dissecta. In P. dissecta, the second instars made a greater number of escapes than other conspecific instars after being attacked by same stage cannibal or heterospecific predator. In P. dissecta, first instars suffered maximum mortality due to cannibalism and intraguild predation by conspecifics and heterospecifics of the same and older developmental stage. No larvae of C. transversalis were eaten by P. dissecta of the same stage. These results suggest that the larvae of P. dissecta were more often potential cannibals than intraguild predators, while the reverse was the case in C. transversalis. Based on this finding, it could be predicted that in patchy prey habitats, high rates of larval cannibalism in P. dissecta would occur with a high risk of cannibalism of first instars. Larvae of C. transversalis would respond as intraguild predators, while those of P. dissecta as intraguild prey. The greater size and walking activity of C. transversalis could be possible reason for this tendency.  相似文献   

17.
Precisely how predators solve the problem of sampling unfamiliar prey types is central to our understanding of the evolution of a variety of antipredator defenses, ranging from Müllerian mimicry to polymorphism. When predators encounter a novel prey item then they must decide whether to take a risk and attack it, thereby gaining a potential meal and valuable information, or avoid such prey altogether. Moreover, if predators initially attack the unfamiliar prey, then at some point(s) they should decide to cease sampling if evidence mounts that the type is on average unprofitable to attack. Here, I cast this problem as a "two-armed bandit," the standard metaphor for exploration-exploitation trade-offs. I assume that as predators encounter and attack unfamiliar prey they use Bayesian inference to update both their beliefs as to the likelihood that individuals of this type are chemically defended, and the probability of seeing the prey type in the future. I concurrently use dynamic programming to identify the critical informational states at which predator should cease sampling. The model explains why predators sample more unprofitable prey before complete rejection when the prey type is common and explains why predators exhibit neophobia when the unfamiliar prey type is perceived to be rare.  相似文献   

18.
Prey-specific gastric evacuation rates and digestion state indices were modelled for gag Mycteroperca microlepis , a large warm-temperate grouper, consuming meals of either baitfish (scaled sardine Harengula jaguana ) or crab (purple swimmer crab Portunus gibbesii ). Power exponential models best fit the wet and dry mass gastric evacuation data and the average digestion indices over post-prandial time (PPT), regardless of prey type or gag size (Adjusted R2 ≥ 0·79). Gag mass ( M ) or total length ( L T) incorporated into an expanded power exponential model, along with exponential scalars, resulted in highly predictive ( R2 ≥ 0·87) gastric evacuation and average digestion state models. The expanded power exponential models fit to the baitfish and crab wet mass gastric evacuation data differed significantly (Kimura's likelihood ratio test (LRT), both P < 0·001). Gag consuming crab showed a digestive lag period of at least 4 h (wet mass) and took a longer time to complete digestion relative to gag consuming baitfish. Gag, as well as many other warm-temperate and tropical groupers, consume a mixture of fish and crab prey and they will therefore require the development of a consumption model that incorporates mixed-prey gastric evacuation models.  相似文献   

19.
Individual variation in behavioral strategies is ubiquitous in nature. Yet, explaining how this variation is being maintained remains a challenging task. We use a spatially-explicit individual-based simulation model to evaluate the extent to which the efficiency of an alternative spacing tactic of prey and an alternative search tactic of predators are influenced by the spatial pattern of prey, social interactions among predators (i.e., interference and information sharing) and predator density. In response to predation risk, prey individuals can either spread out or aggregate. We demonstrate that if prey is extremely clumped, spreading out may help when predators share information regarding prey locations and when predators shift to area-restricted search following an encounter with prey. However, dispersion is counter-selected when predators interact by interference, especially under high predator density. When predators search for more randomly distributed prey, interference and information sharing similarly affect the relative advantage of spreading out. Under a clumped prey spatial pattern, predators benefit from shifting their search tactic to an area-restricted search following an encounter with prey. This advantage is moderated as predator density increases and when predators interact either by interference or information sharing. Under a more random prey pattern, information sharing may deteriorate the inferior search tactic even more, compared to interference or no interaction among predators. Our simulation clarifies how interactions among searching predators may affect aggregation behavior of prey, the relative success of alternative search tactics and their potential to invade established populations using some other search or spacing tactics.  相似文献   

20.
1. Marine Iguanas ( Amblyrhynchus cristatus ) inhabiting the rocky shores of the Galápagos Islands apply two foraging strategies, intertidal and subtidal foraging, in a seasonal climate. Effects of both foraging strategy and seasonality on the daily energy expenditure (DEE) were measured using doubly labelled water.
2. Difference in foraging mode did not result in significant differences in DEE.
3. On Santa Fé the DEE in the warm season was significantly higher than in the cool season (67·8 ± 21·8 kJ kg–0·8 day–1 vs 38·0 kJ kg–0·8 day–1). This difference can be explained by body temperature. A model estimate of the body temperature was used to predict monthly DEE figures, giving a year round budget. On average a 1-kg iguana would need only 47 kJ day–1, or 17 mJ year –1. This is lower than previous estimates in which body temperatures were not taken into account.
4. The water flux of the Marine Iguana increases with increasing foraging time. The linear rise per minute foraging is roughly two times as high for subtidally foraging animals as for intertidal foragers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号