首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alkaliphilic Bacillus sp. strain, KSM-64, produces a mesophilic alkaline endo-1,4-beta-glucanase that is suitable for use in detergents. The deduced amino acid sequence of the enzyme showed very high homology to that of a thermostable alkaline enzyme from alkaliphilic Bacillus sp. strain KSM-S237. Analysis of chimeric enzymes produced from the genes encoding the mesophilic and thermostable enzymes suggested that the lysine residues at positions 137, 179, and 194 are responsible for their thermal stabilization. Replacing the corresponding Glu137, Asn179, and/or Asp194 with lysine by site-directed mutagenesis made the mesophilic enzyme more thermostable. Analyses of the hydrophilicity of deduced amino acid sequences and isoelectric focusing of the modified enzymes suggested that these three specific lysine residues and their replacements are all located on the surface of the enzyme molecule. This fact further suggested that specific ionic interaction is involved in the thermal stabilization of the enzyme.  相似文献   

2.
pH is one of the key parameters that affect the stability and function of proteins. We have studied the effect of pH on the pyridoxal-5'-phosphate-dependent enzyme phosphoserine aminotransferase produced by the facultative alkaliphile Bacillus circulans ssp. alkalophilus using thermodynamic and crystallographic analysis. Enzymatic activity assay showed that the enzyme has maximum activity at pH 9.0 and relative activity less than 10% at pH 7.0. Differential scanning calorimetry and circular dichroism experiments revealed variations in the stability and denaturation profiles of the enzyme at different pHs. Most importantly, release of pyridoxal-5'-phosphate and protein thermal denaturation were found to occur simultaneously at pH 6.0 in contrast to pH 8.5 where denaturation preceded cofactor's release by approximately 3 degrees C. To correlate the observed differences in thermal denaturation with structural features, the crystal structure of phosphoserine aminotransferase was determined at 1.2 and 1.5 A resolution at two different pHs (8.5 and 4.6, respectively). Analysis of the two structures revealed changes in the vicinity of the active site and in surface residues. A conformational change in a loop involved in substrate binding at the entrance of the active site has been identified upon pH change. Moreover, the number of intramolecular ion pairs was found reduced in the pH 4.6 structure. Taken together, the presented kinetics, thermal denaturation, and crystallographic data demonstrate a potential role of the active site in unfolding and suggest that subtle but structurally significant conformational rearrangements are involved in the stability and integrity of phosphoserine aminotransferase in response to pH changes.  相似文献   

3.
Enzymes from psychrophiles show higher catalytic efficiency in the 0-20 degrees C temperature range and often lower thermostability in comparison with meso/thermophilic homologs. Physical and chemical characterization of these enzymes is currently underway in order to understand the molecular basis of cold adaptation. Psychrophilic enzymes are often characterized by higher flexibility, which allows for better interaction with substrates, and by a lower activation energy requirement in comparison with meso/thermophilic counterparts. In their tertiary structure, psychrophilic enzymes present fewer stabilizing interactions, longer and more hydrophilic loops, higher glycine content, and lower proline and arginine content. In this study, a comparative analysis of the structural characteristics of the interfaces between oligomeric psychrophilic enzyme subunits was carried out. Crystallographic structures of oligomeric psychrophilic enzymes, and their meso/thermophilic homologs belonging to five different protein families, were retrieved from the Protein Data Bank. The following structural parameters were calculated: overall and core interface area, characterization of polar/apolar contributions to the interface, hydrophobic contact area, quantity of ion pairs and hydrogen bonds between monomers, internal area and total volume of non-solvent-exposed cavities at the interface, and average packing of interface residues. These properties were compared to those of meso/thermophilic enzymes. The results were analyzed using Student's t-test. The most significant differences between psychrophilic and mesophilic proteins were found in the number of ion pairs and hydrogen bonds, and in the apolarity of their subunit interface. Interestingly, the number of ion pairs at the interface shows an opposite adaptation to those occurring at the monomer core and surface.  相似文献   

4.
A gene has been cloned from a DNA library from alkaliphilic Bacillus firmus OF4 that functionally complements a mutant strain of Escherichia coli, NM81, that carries a deletion for one of that strain's Na+/H+ antiporter genes (delta nhaA). The cloned alkaliphile gene restored to NM81 the ability to grow at pH 7.5 in the presence of 0.6 M NaCl and on 100 mM Li+ in the presence of melibiose, and concomitantly led to an increase in the membrane associated Na+/H+ antiport activity. The biologically active alkaliphile DNA was identified as an incomplete open reading frame, the sequence of which would encode a hydrophobic protein. The insert was used to isolate clones containing the complete open reading frame, which would be predicted to encode a protein with a molecular weight of 42,960 and multiple membrane spanning regions. When the open reading frame was expressed under the control of the T7 promoter, the gene product was localized in the membrane. Southern analysis indicated no homology between the alkaliphile gene, which we propose to call nhaC, and the nhaA gene of Escherichia coli, nor with other genes in digests of DNA from E. coli, Bacillus subtilis, or Bacillus alcalophilus. Although there was also no significant similarity between the deduced protein products of the alkaliphile gene and the nhaA gene of E. coli, there was a small region of significant similarity between the deduced alkaliphile gene product and the protein encoded by a human Na+/H+ antiporter gene (Sardet, C., Franchi, A., and Pouyssegur, J. (1989) Cell 56, 271-280).  相似文献   

5.
Seven clones isolated from libraries of DNA from alkaliphilic Bacillus firmus OF4 restored the growth of a K+-uptake-deficient Escherichia coli mutant on only 10mM K+. None of the clones contained genes with apparent homology to known K+ transport systems in other organisms. Based on sequence homologies, the newly isolated alkaliphile loci included: ftsH; a dipeptide transport system; a gerC locus with hydrophobic open reading frames not found in the comparable locus of Bacillus subtilis; a sugar phosphotransferase enzyme; and a capBC homologue. The ftsH gene provided a new and striking example of a recognized property of extracellular and external regions of polytopic alkaliphile proteins: a significant paucity of basic amino acid residues relative to neutrophile counterparts. The alkaliphile ftsH gene was able to complement a mutant of E. coli with a temperature-sensitive ftsH gene product. Received: 5 August 1996 / Accepted: 14 October 1996  相似文献   

6.
The structure of the complex between the 2, 3-diphosphoglycerate-independent phosphoglycerate mutase (iPGM) from Bacillus stearothermophilus and its 3-phosphoglycerate substrate has recently been solved, and analysis of this structure allowed formulation of a mechanism for iPGM catalysis. In order to obtain further evidence for this mechanism, we have solved the structure of this iPGM complexed with 2-phosphoglycerate and two Mn(2+) ions at 1. 7-A resolution. The structure consists of two different domains connected by two loops and interacting through a network of hydrogen bonds. This structure is consistent with the proposed mechanism for iPGM catalysis, with the two main steps in catalysis being a phosphatase reaction removing the phosphate from 2- or 3-phosphoglycerate, generating an enzyme-bound phosphoserine intermediate, followed by a phosphotransferase reaction as the phosphate is transferred from the enzyme back to the glycerate moiety. The structure also allowed the assignment of the function of the two domains of the enzyme, one of which participates in the phosphatase reaction and formation of the phosphoserine enzyme intermediate, with the other involved in the phosphotransferase reaction regenerating phosphoglycerate. Significant structural similarity has also been found between the active site of the iPGM domain catalyzing the phosphatase reaction and Escherichia coli alkaline phosphatase.  相似文献   

7.
The gene encoding an alkaline serine protease from alkaliphilic Bacillus sp. 221 was cloned in Escherichia coli and expressed in Bacillus subtilis. An open reading frame of 1,140 bases, identified as the protease gene was preceded by a putative Shine-Dalgarno sequence (AGGAGG) with a spacing of 7 bases. The deduced amino acid sequence had a pre-pro-peptide of 111 residues followed by the mature protease comprising 269 residues. The alkaline protease from alkaliphilic Bacillus sp. 221 had higher homology to the protease from alkaliphilic bacilli (82.1% and 99.6%) than to those from neutrophilic bacilli (60.6-61.7%). Also Bacillus sp. 221 protease and other protease from alkaliphilic bacilli shared common amino acid changes and 4 amino acid deletions that seemed to be related to characteristics of the enzyme of alkaliphilic bacilli when compared to the proteases from neutrophilic bacilli.  相似文献   

8.
The relationships between structure, activity, stability and flexibility of a cold-adapted aminopeptidase produced by a psychrophilic marine bacterium have been investigated in comparison with a mesophilic structural and functional human homolog. Differential scanning calorimetry, fluorescence monitoring of thermal- and guanidine hydrochloride-induced unfolding and fluorescence quenching were used to show that the cold-adapted enzyme is characterized by a high activity at low temperatures, a low structural stability versus thermal and chemical denaturants and a greater structural permeability to a quenching agent relative to the mesophilic homolog. These findings support the hypothesis that cold-adapted enzymes maintain their activity at low temperatures as a result of increased global or local structural flexibility, which results in low stability. Analysis of the thermodynamic parameters of irreversible thermal unfolding suggests that entropy-driven factors are responsible for the fast unfolding rate of the cold-adapted aminopeptidase. A reduced number of proline residues, a lower degree of hydrophobic residue burial and a decreased surface accessibility of charged residues may be responsible for this effect. On the other hand, the reduction in enthalpy-driven interactions is the primary determinant of the weak conformational stability.  相似文献   

9.

Background  

A wide variety of stabilizing factors have been invoked so far to elucidate the structural basis of protein thermostability. These include, amongst the others, a higher number of ion-pairs interactions and hydrogen bonds, together with a better packing of hydrophobic residues. It has been frequently observed that packing of hydrophobic side chains is improved in hyperthermophilic proteins, when compared to their mesophilic counterparts. In this work, protein crystal structures from hyper/thermophilic organisms and their mesophilic homologs have been compared, in order to quantify the difference of apolar contact area and to assess the role played by the hydrophobic contacts in the stabilization of the protein core, at high temperatures.  相似文献   

10.
In this study, the crystal structure of a class C beta-lactamase from a psychrophilic organism, Pseudomonas fluorescens, has been refined to 2.2 A resolution. It is one of the few solved crystal structures of psychrophilic proteins. The structure was compared with those of homologous mesophilic enzymes and of another, modeled, psychrophilic protein. The elucidation of the 3D structure of this enzyme provides additional insights into the features involved in cold adaptation. Structure comparison of the psychrophilic and mesophilic beta-lactamases shows that electrostatics seems to play a major role in low-temperature adaptation, with a lower total number of ionic interactions for cold enzymes. The psychrophilic enzymes are also characterized by a decreased number of hydrogen bonds, a lower content of prolines, and a lower percentage of arginines in comparison with lysines. All these features make the structure more flexible so that the enzyme can behave as an efficient catalyst at low temperatures.  相似文献   

11.
The gene for thermostable D-amino acid aminotransferase from a thermophile, Bacillus species YM-1 was cloned and expressed efficiently in Escherichia coli. The entire covalent structure of the enzyme was determined from the nucleotide sequence of the cloned gene and mostly confirmed by amino acid sequences of tryptic peptides from the gene product. The polypeptide is composed of 282 amino acid residues with a calculated molecular weight of 32,226. Comparison of the primary structure with those of various proteins registered in a protein data bank revealed a significant sequence homology between D-amino acid aminotransferase and the L-branched chain amino acid aminotransferase of E. coli (Kuramitsu, S., Ogawa, T., Ogawa, H., and Kagamiyama, H. (1985) J. Biochem. (Tokyo) 97, 993-999); the active site lysyl residue is located in an equivalent position in both enzyme sequences of similar size. Despite the difference in subunit composition and no immunochemical cross-reactivity, the sequences of the two enzymes show similar hydropathy profiles, and spectrophotometric properties of the enzyme-bound cofactor are also similar. The sequence homology suggests that the structural genes for D-amino acid and L-branched chain amino acid aminotransferases evolved from a common ancestral gene.  相似文献   

12.
The gene encoding aspartate aminotransferase of a thermophilic Bacillus species, YM-2, has been cloned and expressed efficiently in Escherichia coli. The primary structure of the enzyme was deduced from nucleotide sequences of the gene and confirmed mostly by amino acid sequences of tryptic peptides. The gene consists of 1,176 base pairs encoding a protein of 392 amino acid residues; the molecular mass of the enzyme subunit is estimated to be 42,661 daltons. The active site lysyl residue that binds the coenzyme, pyridoxal phosphate, was identified as Lys-239. Comparison of the amino acid sequence with those of aspartate aminotransferases from other organisms revealed very low overall similarities (13-14%) except for the sequence of the extremely thermostable enzyme from Sulfolobus solfataricus (34%). Several amino acid residues conserved in all the compared sequences include those that have been reported to participate in binding of the coenzyme in three-dimensional structures of the vertebrate and E. coli enzymes. However, the strictly conserved arginyl residue that is essential for binding of the distal carboxyl group of substrates is not found in the corresponding region of the sequences of the thermostable enzymes from the Bacillus species and S. solfataricus. The Bacillus aspartate aminotransferase has been purified from the E. coli clone cell extracts on a large scale and crystallized in the buffered ammonium sulfate solution by the hanging drop method. The crystals are monoclinic with unit cell dimensions a = 121.2 A, b = 110.5 A, c = 81.8 A, and beta = 97.6 degrees, belonging to space group C2, and contain two molecules in the asymmetric unit. The crystals of the enzyme-alpha-methylaspartate complex are isomorphous with those without the substrate analog.  相似文献   

13.
Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.  相似文献   

14.
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.  相似文献   

15.
Summary The atp operon from the extreme alkaliphile Bacillus firmus OF4 was cloned and sequenced, and shown to contain genes for the eight structural subunits of the ATP synthase, preceded by a ninth gene predicted to encode a 14 kDa hydrophobic protein. The arrangement of genes is identical to that of the atp operons from Escherichia coli, Bacillus megaterium, and thermophilic Bacillus PS3. The deduced amino acid sequences of the subunits of the enzyme are also similar to their homologs in other ATP synthases, except for several unusual substitutions, particularly in the a and c subunits. These substitutions are in domains that have been implicated in the mechanism of proton translocation through F0-ATPase, and therefore could contribute to the gating properties of the alkaliphile ATP synthase or its capacity for proton capture.  相似文献   

16.
The crystal structure of alkaline liquefying alpha-amylase (AmyK) from the alkaliphilic Bacillus sp. KSM-1378 was determined at 2.1 A resolution. The AmyK structure belongs to the GH13 glycoside hydrolase family, which consists of three domains, and bound three calcium and one sodium ions. The alkaline adaptation mechanism of AmyK was investigated by the ancestral sequence evolutionary trace method and by extensive comparisons between alkaline and nonalkaline enzyme structures, including three other protein families: protease, cellulase, and phosphoserine aminotransferase. The consensus change for the alkaline adaptation process was a decrease in the Lys content. The loss of a Lys residue is associated with ion pair remodeling, which mainly consists of the loss of Lys-Asp/Glu ion pairs and the acquisition of Arg ion pairs, preferably Arg-Glu. The predicted replacements of the positively charged amino acids were often, although not always, used for ion pair remodeling.  相似文献   

17.
The crystal structure of CheY protein from Thermotoga maritima has been determined in four crystal forms with and without Mg++ bound, at up to 1.9 A resolution. Structural comparisons with CheY from Escherichia coli shows substantial similarity in their folds, with some concerted changes propagating away from the active site that suggest how phosphorylated CheY, a signal transduction protein in bacterial chemotaxis, is recognized by its targets. A highly conserved segment of the protein (the "y-turn loop," residues 55-61), previously suggested to be a rigid recognition determinant, is for the first time seen in two alternative conformations in the different crystal structures. Although CheY from Thermotoga has much higher thermal stability than its mesophilic counterparts, comparison of structural features previously proposed to enhance thermostability such as hydrogen bonds, ion pairs, compactness, and hydrophobic surface burial would not suggest it to be so.  相似文献   

18.
Bhatt AN  Prakash K  Subramanya HS  Bhakuni V 《Biochemistry》2002,41(40):12115-12123
To determine how much information can be transferred from folding and unfolding studies of one protein to another member of the same family or between the mesophilic and thermophilic homologues of a protein, we have characterized the equilibrium unfolding process of the dimeric enzyme serine hydroxymethyltransferase (SHMT) from two sources, Bacillus subtilis (bsSHMT) and Bacillus stearothermophilus (bstSHMT). Although the sequences of the two enzymes are highly identical ( approximately 77%) and homologous (89%), bstSHMT shows a significantly higher stability against both thermal and urea denaturation than bsSHMT. The GdmCl-induced unfolding of bsSHMT was found to be a two-step process with dissociation of the native dimer, resulting in stabilization of a monomeric species, followed by the unfolding of the monomeric species. A similar unfolding pathway has been reported for Escherichia coli aspartate aminotransferase, a member of the type I fold family of PLP binding enzymes such as SHMT, the sequence of which is only slightly identical ( approximately 14%) with that of SHMT. In contrast, for bstSHMT, a highly cooperative unfolding without stabilization of any monomeric intermediate was observed. These studies suggest that mesophilic proteins of the same structural family even sharing a low level of sequence identity may follow a common unfolding mechanism, whereas the mesophilic and thermophilic homologues of the same protein despite having a high degree of sequence identity may follow significantly different unfolding mechanisms.  相似文献   

19.
The present paper reports structure prediction and analysis of a psychrophilic β-mannanase from Glaciozyma antarctica PI12 yeast. A threading method was used for 3D structure prediction of the enzyme using the MODELLER 9v12 program regarding its low sequence identity (<30%). The constructed model has been used in a comparative study to analyse its cold adaptation mechanism using other mesophilic, thermophilic, and hyperthermophilic mannanases. The structural and molecular dynamics analysis suggests that flexibility of the enzyme is increased through different structural characteristics, and therefore, the possibility of efficient catalytic reactions is provided at cold environment. These characteristics are the presence of longer loops, broken or shorter strands and helices, a lower number of salt bridges and hydrogen bonds, a higher exposure of the hydrophobic side chains to the solvent and an increased total solvent accessible surface area. Furthermore, the high catalytic efficiency and structural flexibility of the psychrophilic mannanase was supported by the results of principal component analysis.  相似文献   

20.
One widely known drawback of enzymes is their instability in diverse conditions. The thermostability of enzymes is particularly relevant for industrial applications because operation at high temperatures has the advantage of a faster reaction rate. Protein stability is mainly determined in this study by intra-molecular hydrophobic interactions that have a collective and 3-dimensional clustering effect. To interpret the thermostability of enzymes, network analysis was introduced into the protein structure, and a network parameter of structural hierarchy, k of k-clique, was used to discern more developed hydrophobic interaction clusters in the protein structure. The favorable clustering conformations of hydrophobic residues, which seemed to be important for protein thermostability, were discovered by the application of a network analysis to hydrophobic interactions of GH11 xylanases. Coordinating higher k-clique hydrophobic interaction clusters through the site-directed mutagenesis of the model enzyme, Bacillus circulans xylanase, stabilized the local structure and thus improved thermostability, such that the enzyme half-life and melting temperature increased by 78 fold and 8.8 °C, respectively. This study highlights the advantages of interpreting collective hydrophobic interaction patterns and their structural hierarchy and the possibility of applying network analysis to the thermostabilization of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号